BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bai Z, Li R, Li K, Hou C, Zhang Q, Li Y, Wang H. Transparent Metal-Organic Framework-Based Gel Electrolytes for Generalized Assembly of Quasi-Solid-State Electrochromic Devices. ACS Appl Mater Interfaces 2020;12:42955-61. [PMID: 32869642 DOI: 10.1021/acsami.0c11876] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Bai Z, Li R, Ping L, Fan Q, Lu Z, Hou C, Zhang Q, Li Y, Li K, Ling X, Wang H. Photo-induced self-reduction enabling ultralow threshold voltage energy-conservation electrochromism. Chemical Engineering Journal 2023;452:139645. [DOI: 10.1016/j.cej.2022.139645] [Reference Citation Analysis]
2 He C, Sun J, Hou C, Zhang Q, Li Y, Li K, Wang H. Sandwich-structural ionogel electrolyte with core–shell ionic-conducting nanocomposites for stable Li metal battery. Chemical Engineering Journal 2023;451:138993. [DOI: 10.1016/j.cej.2022.138993] [Reference Citation Analysis]
3 Tao C, Li Y, Wang J. The progress of electrochromic materials based on metal–organic frameworks. Coordination Chemistry Reviews 2023;475:214891. [DOI: 10.1016/j.ccr.2022.214891] [Reference Citation Analysis]
4 Xing G, Wu L, Kuang G, Ma T, Chen Z, Tao Y, Kang Y, Zhang S. Integration of high surface-energy electrochromic polymer with in-situ polymerized quasi-solid electrolyte for efficient electrochromism. Electrochimica Acta 2022;432:141216. [DOI: 10.1016/j.electacta.2022.141216] [Reference Citation Analysis]
5 Sun P, Chen J, Li Y, Tang X, Sun H, Song G, Mu X, Zhang T, Zha X, Li F, Gao Y, Cong S, Zhao Z. Deep eutectic solvent‐based gel electrolytes for flexible electrochromic devices with excellent high/low temperature durability. InfoMat. [DOI: 10.1002/inf2.12363] [Reference Citation Analysis]
6 Huang X, Chen J, Xie H, Zhao F, Fan S, Zhang Y. Inkjet printing of 2D polyaniline for fabricating flexible and patterned electrochromic devices. Sci China Mater 2022;65:2217-2226. [DOI: 10.1007/s40843-022-2037-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Dong R, Zheng J, Yuan J, Li Y, Zhang T, Liu Y, Liu Y, Sun Y, Zhong B, Chen Y, Wu Z, Guo X. A polyethylene oxide/metal-organic framework composite solid electrolyte with uniform Li deposition and stability for lithium anode by immobilizing anions. Journal of Colloid and Interface Science 2022;620:47-56. [DOI: 10.1016/j.jcis.2022.03.148] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Qiu Z, Zhu S, Lu H, Gu Y, Wu Z, Zhang G, Yang B. 60‐1: Distinguished Paper: An Electrophoretic E‐Paper Device with Stretchable, Washable, and Rewritable Functions. Symp Digest of Tech Papers 2022;53:784-787. [DOI: 10.1002/sdtp.15608] [Reference Citation Analysis]
9 Wang N, Liu Q, Hu X, Wang F, Hu M, Yu Q, Zhang G. Electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@graphene for rapid detection of aflatoxin B1 in peanut oil. Anal Biochem 2022;:114710. [PMID: 35568158 DOI: 10.1016/j.ab.2022.114710] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
10 Qiu Z, Zhu S, Lu H, Gu Y, Wu Z, Zhang G, Deng S, Yang B. An electrophoretic e‐paper device with stretchable, washable, and rewritable functions. J Soc Info Display. [DOI: 10.1002/jsid.1129] [Reference Citation Analysis]
11 Ling Y, Fan H, Wang K, Lu Z, Wang L, Hou C, Zhang Q, Li Y, Li K, Wang H. Electrochemical Actuators with Multicolor Changes and Multidirectional Actuation. Small 2022;18:e2107778. [PMID: 35257482 DOI: 10.1002/smll.202107778] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Wang B, Zheng R, Yang W, Han X, Hou C, Zhang Q, Li Y, Li K, Wang H. Synergistic Solvation and Interface Regulations of Eco‐Friendly Silk Peptide Additive Enabling Stable Aqueous Zinc‐Ion Batteries. Adv Funct Materials 2022;32:2112693. [DOI: 10.1002/adfm.202112693] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
13 Li X, Ma N, Xu G, Zhang R, Liu J. Efficient electrochromic device employing thermal tolerant hydrogel electrolyte with a wide operating temperature range from -40 to 60°C. Solar Energy Materials and Solar Cells 2022;234:111449. [DOI: 10.1016/j.solmat.2021.111449] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
14 Qiu Z, Wu Z, Zhong M, Yang M, Xu J, Zhang G, Qin Z, Yang B. Stretchable, Washable, and Rewritable Electrophoretic Displays with Tough Hydrogel–Elastomer Interface. Adv Materials Technologies 2022;7:2100961. [DOI: 10.1002/admt.202100961] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Li C, Liu G, Wang K, Dong W, Han J, Yu Y, Min Z, Yang C, Lu Z. Electrochemically-Matched and Nonflammable Janus Solid Electrolyte for Lithium-Metal Batteries. ACS Appl Mater Interfaces 2021;13:39271-81. [PMID: 34375074 DOI: 10.1021/acsami.1c08687] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
16 Zhang N, Jin Y, Zhang Q, Liu J, Zhang Y, Wang H. Direct fabrication of electrochromic Ni-MOF 74 film on ITO with high-stable performance. Ionics 2021;27:3655-62. [DOI: 10.1007/s11581-021-04112-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Zhang G, Guo K, Shen X, Ning H, Liang H, Zhong J, Xu W, Tang B, Yao R, Peng J. Physical Simulation Model of WO3 Electrochromic Films Based on Continuous Electron-Transfer Kinetics and Experimental Verification. ACS Appl Mater Interfaces 2021;13:4768-76. [PMID: 33445866 DOI: 10.1021/acsami.0c19993] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
18 Huang W, Li X, Yang X, Zhang X, Wang H, Wang H. The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Mater Chem Front 2021;5:3593-613. [DOI: 10.1039/d0qm00936a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]