BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yin S, Gao Y, Zhang Y, Xu J, Zhu J, Zhou F, Gu X, Wang G, Li J. Reduction/Oxidation-Responsive Hierarchical Nanoparticles with Self-Driven Degradability for Enhanced Tumor Penetration and Precise Chemotherapy. ACS Appl Mater Interfaces 2020;12:18273-91. [DOI: 10.1021/acsami.0c00355] [Cited by in Crossref: 8] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Li M, Zhang Y, Zhang Q, Li J. Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Mater Today Bio 2022;16:100364. [PMID: 35875197 DOI: 10.1016/j.mtbio.2022.100364] [Reference Citation Analysis]
2 Zhang X, Jiang J, Yu Q, Zhou P, Yang S, Xia J, Deng T, Yu C. ZIF-based carbon dots with lysosome-Golgi transport property as visualization platform for deep tumour therapy via hierarchical size/charge dual-transform and transcytosis. Nanoscale 2022;14:8510-24. [PMID: 35660835 DOI: 10.1039/d2nr02134j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Jiao J, He J, Li M, Yang J, Yang H, Wang X, Yang S. A porphyrin-based metallacage for enhanced photodynamic therapy. Nanoscale 2022;14:6373-83. [PMID: 35411893 DOI: 10.1039/d1nr08293k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Zhu C, Wang Y, Li Z, Sun W, Jiang BP, Shen XC. Metallopolysaccharide-Based Smart Nanotheranostic for Imaging-Guided Precise Phototherapy and Sequential Enzyme-Activated Ferroptosis. Biomacromolecules 2022. [PMID: 35404583 DOI: 10.1021/acs.biomac.2c00018] [Reference Citation Analysis]
5 Ding M, Zhang Y, Li J, Pu K. Bioenzyme-based nanomedicines for enhanced cancer therapy. Nano Converg 2022;9:7. [PMID: 35119544 DOI: 10.1186/s40580-022-00297-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Tie S, Tan M. Current Advances in Multifunctional Nanocarriers Based on Marine Polysaccharides for Colon Delivery of Food Polyphenols. J Agric Food Chem . [DOI: 10.1021/acs.jafc.1c05012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
7 Chen Q, Xu S, Liu S, Wang Y, Liu G. Emerging nanomedicines of paclitaxel for cancer treatment. J Control Release 2022;342:280-94. [PMID: 35016919 DOI: 10.1016/j.jconrel.2022.01.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
8 Pan Z, Yang G, Yuan J, Pan M, Li J, Tan H. Effect of the disulfide bond and polyethylene glycol on the degradation and biophysicochemical properties of polyurethane micelles. Biomater Sci 2022. [PMID: 34988575 DOI: 10.1039/d1bm01422f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
9 Xu X, Wu Y, Qian X, Wang Y, Wang J, Li J, Li Y, Zhang Z. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Adv Healthc Mater 2022;11:e2101428. [PMID: 34706400 DOI: 10.1002/adhm.202101428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Tian X, Bera H, Guo X, Xu R, Sun J, He Z, Cun D, Yang M. Pulmonary Delivery of Reactive Oxygen Species/Glutathione-Responsive Paclitaxel Dimeric Nanoparticles Improved Therapeutic Indices against Metastatic Lung Cancer. ACS Appl Mater Interfaces 2021;13:56858-72. [PMID: 34806372 DOI: 10.1021/acsami.1c16351] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Meng Y, Wu J. One-Step and Facile Synthesis of Poly(phenylalanine) as a Robust Drug Carrier for Enhanced Cancer Therapy. ACS Appl Mater Interfaces 2021;13:49658-70. [PMID: 34648254 DOI: 10.1021/acsami.1c13013] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Zhang W, Gong C, Chen Z, Li M, Li Y, Gao J. Tumor microenvironment-activated cancer cell membrane-liposome hybrid nanoparticle-mediated synergistic metabolic therapy and chemotherapy for non-small cell lung cancer. J Nanobiotechnology 2021;19:339. [PMID: 34689761 DOI: 10.1186/s12951-021-01085-y] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Qiao C, Wang X, Liu G, Yang Z, Jia Q, Wang L, Zhang R, Xia Y, Wang Z, Yang Y. Erythrocyte Membrane Camouflaged Metal–Organic Framework Nanodrugs for Remodeled Tumor Microenvironment and Enhanced Tumor Chemotherapy. Adv Funct Materials 2022;32:2107791. [DOI: 10.1002/adfm.202107791] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
14 Luo K, Gao Y, Yin S, Yao Y, Yu H, Wang G, Li J. Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer. Acta Biomater 2021;134:649-63. [PMID: 34289420 DOI: 10.1016/j.actbio.2021.07.029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
15 Wang Y, Zhang Z, Zheng C, Zhao X, Zheng Y, Liu Q, Liu Y, Shi L. Multistage Adaptive Nanoparticle Overcomes Biological Barriers for Effective Chemotherapy. Small 2021;17:e2100578. [PMID: 34190401 DOI: 10.1002/smll.202100578] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
16 Banstola A, Poudel K, Pathak S, Shrestha P, Kim JO, Jeong JH, Yook S. Hypoxia-Mediated ROS Amplification Triggers Mitochondria-Mediated Apoptotic Cell Death via PD-L1/ROS-Responsive, Dual-Targeted, Drug-Laden Thioketal Nanoparticles. ACS Appl Mater Interfaces 2021;13:22955-69. [PMID: 33969998 DOI: 10.1021/acsami.1c03594] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
17 Luo K, Lian Y, Zhang M, Yu H, Wang G, Li J. Charge convertible biomimetic micellar nanoparticles for enhanced melanoma-targeted therapy through tumor cells and tumor-associated macrophages dual chemotherapy with IDO immunotherapy. Chemical Engineering Journal 2021;412:128659. [DOI: 10.1016/j.cej.2021.128659] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
18 Wei G, Wang Y, Yang G, Wang Y, Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 2021;11:6370-92. [PMID: 33995663 DOI: 10.7150/thno.57828] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 24.0] [Reference Citation Analysis]
19 Zhao J, Du J, Wang J, An N, Zhou K, Hu X, Dong Z, Liu Y. Folic Acid and Poly(ethylene glycol) Decorated Paclitaxel Nanocrystals Exhibit Enhanced Stability and Breast Cancer-Targeting Capability. ACS Appl Mater Interfaces 2021;13:14577-86. [PMID: 33728919 DOI: 10.1021/acsami.1c00184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
20 Xie Z, Shen J, Sun H, Li J, Wang X. Polymer-based hydrogels with local drug release for cancer immunotherapy. Biomed Pharmacother 2021;137:111333. [PMID: 33571834 DOI: 10.1016/j.biopha.2021.111333] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
21 Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020;49:9057-94. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 45] [Article Influence: 6.5] [Reference Citation Analysis]
22 Yang H, Tong Z, Sun S, Mao Z. Enhancement of tumour penetration by nanomedicines through strategies based on transport processes and barriers. J Control Release 2020;328:28-44. [PMID: 32858072 DOI: 10.1016/j.jconrel.2020.08.024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]