BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Okamoto A, Asai T, Hirai Y, Shimizu K, Koide H, Minamino T, Oku N. Systemic Administration of siRNA with Anti-HB-EGF Antibody-Modified Lipid Nanoparticles for the Treatment of Triple-Negative Breast Cancer. Mol Pharm 2018;15:1495-504. [PMID: 29502423 DOI: 10.1021/acs.molpharmaceut.7b01055] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Hattab D, Bakhtiar A. Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements. Pharmaceutics 2020;12:E929. [PMID: 33003468 DOI: 10.3390/pharmaceutics12100929] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
2 Parashar D, Rajendran V, Shukla R, Sistla R. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. European Journal of Pharmaceutical Sciences 2020;142:105159. [DOI: 10.1016/j.ejps.2019.105159] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
3 Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomedicine & Pharmacotherapy 2019;110:319-41. [DOI: 10.1016/j.biopha.2018.11.122] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
4 Dammes N, Peer D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci 2020;41:755-75. [PMID: 32893005 DOI: 10.1016/j.tips.2020.08.004] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 19.0] [Reference Citation Analysis]
5 Hirai Y, Saeki R, Song F, Koide H, Fukata N, Tomita K, Maeda N, Oku N, Asai T. Charge-reversible lipid derivative: A novel type of pH-responsive lipid for nanoparticle-mediated siRNA delivery. International Journal of Pharmaceutics 2020;585:119479. [DOI: 10.1016/j.ijpharm.2020.119479] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Xu M, Wen Y, Liu Y, Tan X, Chen X, Zhu X, Wei C, Chen L, Wang Z, Liu J. Hollow mesoporous ruthenium nanoparticles conjugated bispecific antibody for targeted anti-colorectal cancer response of combination therapy. Nanoscale 2019;11:9661-78. [DOI: 10.1039/c9nr01904a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
7 Rizwanullah M, Ahmad MZ, Ghoneim MM, Alshehri S, Imam SS, Md S, Alhakamy NA, Jain K, Ahmad J. Receptor-Mediated Targeted Delivery of Surface-ModifiedNanomedicine in Breast Cancer: Recent Update and Challenges. Pharmaceutics 2021;13:2039. [PMID: 34959321 DOI: 10.3390/pharmaceutics13122039] [Reference Citation Analysis]
8 Picheth GF, Ganzella FAO, Filizzola JO, Canquerino YK, Cardoso GC, Collini MB, Colauto LB, Figueroa-Magalhães MC, Cavalieri EA, Klassen G. Ligand-mediated nanomedicines against breast cancer: a review. Nanomedicine (Lond) 2022. [PMID: 35438008 DOI: 10.2217/nnm-2021-0473] [Reference Citation Analysis]
9 Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin Cancer Biol 2021;69:226-37. [PMID: 31704145 DOI: 10.1016/j.semcancer.2019.10.020] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
10 Kaukonen D, Kaukonen R, Polit L, Hennessy BT, Lund R, Madden SF. Analysis of H3K4me3 and H3K27me3 bivalent promotors in HER2+ breast cancer cell lines reveals variations depending on estrogen receptor status and significantly correlates with gene expression. BMC Med Genomics 2020;13:92. [PMID: 32620123 DOI: 10.1186/s12920-020-00749-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Ghosh S, Javia A, Shetty S, Bardoliwala D, Maiti K, Banerjee S, Khopade A, Misra A, Sawant K, Bhowmick S. Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021;337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hirata Y, Tashima R, Mitsuhashi N, Yoneda S, Ozono M, Fukuta T, Majima E, Kogure K. A simple, fast, and orientation-controllable technology for preparing antibody-modified liposomes. Int J Pharm 2021;607:120966. [PMID: 34352337 DOI: 10.1016/j.ijpharm.2021.120966] [Reference Citation Analysis]
13 Peuler K, Dimmitt N, Lin CC. Clickable modular polysaccharide nanoparticles for selective cell-targeting. Carbohydr Polym 2020;234:115901. [PMID: 32070522 DOI: 10.1016/j.carbpol.2020.115901] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
14 Wahane A, Waghmode A, Kapphahn A, Dhuri K, Gupta A, Bahal R. Role of Lipid-Based and Polymer-Based Non-Viral Vectors in Nucleic Acid Delivery for Next-Generation Gene Therapy. Molecules 2020;25:E2866. [PMID: 32580326 DOI: 10.3390/molecules25122866] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
15 Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, Barthélémy P. Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications. Bioconjug Chem 2019;30:366-83. [PMID: 30608140 DOI: 10.1021/acs.bioconjchem.8b00761] [Cited by in Crossref: 71] [Cited by in F6Publishing: 65] [Article Influence: 23.7] [Reference Citation Analysis]
16 Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. Adv Mater 2022;:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Yonezawa S, Koide H, Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev 2020;154-155:64-78. [PMID: 32768564 DOI: 10.1016/j.addr.2020.07.022] [Cited by in Crossref: 62] [Cited by in F6Publishing: 50] [Article Influence: 31.0] [Reference Citation Analysis]
18 Pengnam S, Plianwong S, Yingyongnarongkul BE, Patrojanasophon P, Opanasopit P. Delivery of small interfering RNAs by nanovesicles for cancer therapy. Drug Metab Pharmacokinet 2021;42:100425. [PMID: 34954489 DOI: 10.1016/j.dmpk.2021.100425] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wang H, Wang X, Zhang Y, Cheng R, Yuan J, Zhong Z. Systemic Delivery of NAC-1 siRNA by Neuropilin-Targeted Polymersomes Sensitizes Antiangiogenic Therapy of Metastatic Triple-Negative Breast Cancer. Biomacromolecules 2020;21:5119-27. [PMID: 33174734 DOI: 10.1021/acs.biomac.0c01253] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Bukhari SNA. Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022;14:866. [PMID: 35456698 DOI: 10.3390/pharmaceutics14040866] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021;166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Reference Citation Analysis]