BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Karlsson JOM, Braslavsky I, Elliott JAW. Protein-Water-Ice Contact Angle. Langmuir 2019;35:7383-7. [PMID: 29979046 DOI: 10.1021/acs.langmuir.8b01276] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Naullage PM, Molinero V. Slow Propagation of Ice Binding Limits the Ice-Recrystallization Inhibition Efficiency of PVA and Other Flexible Polymers. J Am Chem Soc 2020;142:4356-66. [DOI: 10.1021/jacs.9b12943] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
2 Elliott JAW. Gibbsian Surface Thermodynamics. J Phys Chem B 2020;124:10859-78. [DOI: 10.1021/acs.jpcb.0c05946] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Kozuch DJ, Stillinger FH, Debenedetti PG. Genetic Algorithm Approach for the Optimization of Protein Antifreeze Activity Using Molecular Simulations. J Chem Theory Comput 2020;16:7866-73. [PMID: 33201707 DOI: 10.1021/acs.jctc.0c00773] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Guy Preis S, Chayet H, Katz A, Yashunsky V, Kaner A, Ullman S, Braslavsky I. Labyrinth ice pattern formation induced by near-infrared irradiation. Sci Adv 2019;5:eaav1598. [PMID: 30944855 DOI: 10.1126/sciadv.aav1598] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
5 Elliott JAW. Surface thermodynamics at the nanoscale. J Chem Phys 2021;154:190901. [PMID: 34240888 DOI: 10.1063/5.0049031] [Reference Citation Analysis]
6 Kozuch DJ, Stillinger FH, Debenedetti PG. Combined molecular dynamics and neural network method for predicting protein antifreeze activity. Proc Natl Acad Sci U S A 2018;115:13252-7. [PMID: 30530650 DOI: 10.1073/pnas.1814945115] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
7 Chasnitsky M, Braslavsky I. Ice-binding proteins and the applicability and limitations of the kinetic pinning model. Philos Trans A Math Phys Eng Sci 2019;377:20180391. [PMID: 30982449 DOI: 10.1098/rsta.2018.0391] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
8 Bianco V, Espinosa JR, Vega C. Antifreeze proteins and homogeneous nucleation: On the physical determinants impeding ice crystal growth. J Chem Phys 2020;153:091102. [PMID: 32891082 DOI: 10.1063/5.0023211] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Mohr S, Pétuya R, Wylde J, Sarria J, Purkayastha N, Ward Z, Bodnar S, Tsimpanogiannis IN. Size dependence of the dissociation process of spherical hydrate particles via microsecond molecular dynamics simulations. Phys Chem Chem Phys 2021;23:11180-5. [DOI: 10.1039/d1cp01223a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Kamat K, Naullage PM, Molinero V, Peters B. Diffusion Attachment Model for Long Helical Antifreeze Proteins to Ice. Biomacromolecules 2021. [PMID: 34928587 DOI: 10.1021/acs.biomac.1c01247] [Reference Citation Analysis]
11 de Miguel R, Rubí JM. Gibbs thermodynamics and surface properties at the nanoscale. J Chem Phys 2021;155:221101. [PMID: 34911302 DOI: 10.1063/5.0072533] [Reference Citation Analysis]