BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Singh R, Karakoti AS, Self W, Seal S, Singh S. Redox-Sensitive Cerium Oxide Nanoparticles Protect Human Keratinocytes from Oxidative Stress Induced by Glutathione Depletion. Langmuir 2016;32:12202-11. [PMID: 27792880 DOI: 10.1021/acs.langmuir.6b03022] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Haghi-aminjan H, Baeeri M, Khalid M, Rahimifard M, Mahdizadeh E, Hooshangi Shayesteh MR, Abdollahi M. Senolytic Effect of Cerium Oxide Nanoparticles (CeO2 NPs) by Attenuating p38/NF-кB, and p53/p21 Signaling Pathways. J Clust Sci. [DOI: 10.1007/s10876-021-02152-y] [Reference Citation Analysis]
2 Kermani G, Karimi E, Tabrizi MH. Hybrid Nanoarchitectonics of Chitosan-Cerium Oxide Nanoparticles for Anticancer Potentials. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02329-6] [Reference Citation Analysis]
3 Xiao Z, Liang P, Chen J, Chen MF, Gong F, Li C, Zhou C, Hong P, Yang P, Qian ZJ. A Peptide YGDEY from Tilapia Gelatin Hydrolysates Inhibits UVB-mediated Skin Photoaging by Regulating MMP-1 and MMP-9 Expression in HaCaT Cells. Photochem Photobiol 2019;95:1424-32. [PMID: 31230361 DOI: 10.1111/php.13135] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
4 Kalantari K, Mostafavi E, Saleh B, Soltantabar P, Webster TJ. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. European Polymer Journal 2020;134:109853. [DOI: 10.1016/j.eurpolymj.2020.109853] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 13.5] [Reference Citation Analysis]
5 Pratsinis A, Kelesidis GA, Zuercher S, Krumeich F, Bolisetty S, Mezzenga R, Leroux JC, Sotiriou GA. Enzyme-Mimetic Antioxidant Luminescent Nanoparticles for Highly Sensitive Hydrogen Peroxide Biosensing. ACS Nano 2017;11:12210-8. [PMID: 29182310 DOI: 10.1021/acsnano.7b05518] [Cited by in Crossref: 73] [Cited by in F6Publishing: 62] [Article Influence: 14.6] [Reference Citation Analysis]
6 Joshi KM, Shelar A, Kasabe U, Nikam LK, Pawar RA, Sangshetti J, Kale BB, Singh AV, Patil R, Chaskar MG. Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. Materials Science and Engineering: C 2021. [DOI: 10.1016/j.msec.2021.112592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Vinothkumar G, Arunkumar P, Mahesh A, Dhayalan A, Suresh Babu K. Size- and defect-controlled anti-oxidant enzyme mimetic and radical scavenging properties of cerium oxide nanoparticles. New J Chem 2018;42:18810-23. [DOI: 10.1039/c8nj04435j] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
8 Dong H, Fan Y, Zhang W, Gu N, Zhang Y. Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine. Bioconjug Chem 2019;30:1273-96. [PMID: 30966739 DOI: 10.1021/acs.bioconjchem.9b00171] [Cited by in Crossref: 44] [Cited by in F6Publishing: 26] [Article Influence: 14.7] [Reference Citation Analysis]
9 Ribeiro FM, de Oliveira MM, Singh S, Sakthivel TS, Neal CJ, Seal S, Ueda-Nakamura T, Lautenschlager SOS, Nakamura CV. Ceria Nanoparticles Decrease UVA-Induced Fibroblast Death Through Cell Redox Regulation Leading to Cell Survival, Migration and Proliferation. Front Bioeng Biotechnol 2020;8:577557. [PMID: 33102462 DOI: 10.3389/fbioe.2020.577557] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Nirmal GR, Lin ZC, Tsai MJ, Yang SC, Alalaiwe A, Fang JY. Photothermal treatment by PLGA-gold nanorod-isatin nanocomplexes under near-infrared irradiation for alleviating psoriasiform hyperproliferation. J Control Release 2021;333:487-99. [PMID: 33845057 DOI: 10.1016/j.jconrel.2021.04.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Singh S. Glucose decorated gold nanoclusters: A membrane potential independent fluorescence probe for rapid identification of cancer cells expressing Glut receptors. Colloids and Surfaces B: Biointerfaces 2017;155:25-34. [DOI: 10.1016/j.colsurfb.2017.03.052] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
12 Shah F, Yadav N, Singh S. Phosphotungstate-sandwiched between cerium oxide and gold nanoparticles exhibit enhanced catalytic reduction of 4-nitrophenol and peroxidase enzyme-like activity. Colloids Surf B Biointerfaces 2021;198:111478. [PMID: 33272726 DOI: 10.1016/j.colsurfb.2020.111478] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
13 Song YY, Yuan Y, Shi X, Che YY. Improved drug delivery and anti-tumor efficacy of combinatorial liposomal formulation of genistein and plumbagin by targeting Glut1 and Akt3 proteins in mice bearing prostate tumor. Colloids Surf B Biointerfaces 2020;190:110966. [PMID: 32199263 DOI: 10.1016/j.colsurfb.2020.110966] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Zou W, Li X, Li C, Sun Y, Zhang X, Jin C, Jiang K, Zhou Q, Hu X. Influence of Size and Phase on the Biodegradation, Excretion, and Phytotoxicity Persistence of Single-Layer Molybdenum Disulfide. Environ Sci Technol 2020;54:12295-306. [DOI: 10.1021/acs.est.0c02642] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
15 Qi M, Li W, Zheng X, Li X, Sun Y, Wang Y, Li C, Wang L. Cerium and Its Oxidant-Based Nanomaterials for Antibacterial Applications: A State-of-the-Art Review. Front Mater 2020;7:213. [DOI: 10.3389/fmats.2020.00213] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
16 Singh S. Nanomaterials Exhibiting Enzyme-Like Properties (Nanozymes): Current Advances and Future Perspectives. Front Chem 2019;7:46. [PMID: 30805331 DOI: 10.3389/fchem.2019.00046] [Cited by in Crossref: 73] [Cited by in F6Publishing: 45] [Article Influence: 24.3] [Reference Citation Analysis]
17 Wu B, Lu ST, Deng K, Yu H, Cui C, Zhang Y, Wu M, Zhuo RX, Xu HB, Huang SW. MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles. Int J Nanomedicine 2017;12:6871-82. [PMID: 29066883 DOI: 10.2147/IJN.S143048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
18 Tekade R, Maheshwari R, Jain N. Toxicity of nanostructured biomaterials. Nanobiomaterials. Elsevier; 2018. pp. 231-56. [DOI: 10.1016/b978-0-08-100716-7.00027-1] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
19 Sepanjnia A, Ghasemi H, Mohseni R, Ranjbar A, Shabani F, Salimi F, Kheiripour N. Effect of Cerium Oxide Nanoparticles on Oxidative Stress Biomarkers in Rats' Kidney, Lung, and Serum. Iran Biomed J 2020;24:251-6. [PMID: 32306723 DOI: 10.29252/ibj.24.4.251] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Gupta N, Bhagat S, Singh M, Jangid AK, Bansal V, Singh S, Pooja D, Kulhari H. Site-specific delivery of a natural chemotherapeutic agent to human lung cancer cells using biotinylated 2D rGO nanocarriers. Mater Sci Eng C Mater Biol Appl 2020;112:110884. [PMID: 32409041 DOI: 10.1016/j.msec.2020.110884] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
21 Adebayo OA, Akinloye O, Adaramoye OA. Cerium Oxide Nanoparticles Attenuate Oxidative Stress and Inflammation in the Liver of Diethylnitrosamine-Treated Mice. Biol Trace Elem Res 2020;193:214-25. [DOI: 10.1007/s12011-019-01696-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
22 Zheng S, Gu H, Yin D, Zhang J, Li W, Fu Y. Biogenic synthesis of AuPd nanocluster as a peroxidase mimic and its application for colorimetric assay of acid phosphatase. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;589:124444. [DOI: 10.1016/j.colsurfa.2020.124444] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
23 Bhagat S, Srikanth Vallabani N, Shutthanandan V, Bowden M, Karakoti AS, Singh S. Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. Journal of Colloid and Interface Science 2018;513:831-42. [DOI: 10.1016/j.jcis.2017.11.064] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
24 Vallabani NS, Singh S, Karakoti AS. Investigating the role of ATP towards amplified peroxidase activity of Iron oxide nanoparticles in different biologically relevant buffers. Applied Surface Science 2019;492:337-48. [DOI: 10.1016/j.apsusc.2019.06.177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
25 Allawadhi P, Khurana A, Allwadhi S, Joshi K, Packirisamy G, Bharani KK. Nanoceria as a possible agent for the management of COVID-19. Nano Today 2020;35:100982. [PMID: 32952596 DOI: 10.1016/j.nantod.2020.100982] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
26 Singh N, Geethika M, Eswarappa SM, Mugesh G. Manganese-Based Nanozymes: Multienzyme Redox Activity and Effect on the Nitric Oxide Produced by Endothelial Nitric Oxide Synthase. Chem Eur J 2018;24:8393-403. [DOI: 10.1002/chem.201800770] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
27 Shah J, Pandya A, Goyal P, Misra SK, Singh S. BSA-Decorated Magnesium Nanoparticles for Scavenging Hydrogen Peroxide from Human Hepatic Cells. ACS Appl Nano Mater 2020;3:3355-70. [DOI: 10.1021/acsanm.0c00088] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Singh R, Singh S. Catalytically active cerium oxide nanoparticles protect mammalian cells from endogenous reactive oxygen species. Materials Today: Proceedings 2019;10:25-31. [DOI: 10.1016/j.matpr.2019.02.184] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Truong L, Zaikova T, Schaeublin NM, Kim K, Hussain SM, Hutchison JE, Tanguay RL. Residual weakly bound ligands influence biological compatibility of mixed ligand shell, thiol-stabilized gold nanoparticles. Environ Sci : Nano 2017;4:1634-46. [DOI: 10.1039/c7en00363c] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
30 Jiang L, Xu Y, Zhang P, Zhang Y, Li H, Chen J, Liu S, Zeng Q. Functional MoS 2 nanosheets inhibit melanogenesis to enhance UVB/X-ray induced damage. J Mater Chem B 2019;7:4552-60. [DOI: 10.1039/c9tb00419j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 Chen J, Cui DN, Ullah H, Li S, Pan F, Xu CM, Tu XB, Zhang ZH. The Function of LmPrx6 in Diapause Regulation in Locusta migratoria Through the Insulin Signaling Pathway. Insects 2020;11:E763. [PMID: 33167530 DOI: 10.3390/insects11110763] [Reference Citation Analysis]
32 Shah M, Shah J, Arya H, Vyas A, Vijapura A, Gajipara A, Shamal A, Bakshi M, Thakore P, Shah R, Saxena V, Varade D, Singh S. Biological Oxidase Enzyme Mimetic Cu‐Pt Nanoalloys: A Multifunctional Nanozyme for Colorimetric Detection of Ascorbic Acid and Identification of Mammalian Cells. ChemistrySelect 2019;4:6537-46. [DOI: 10.1002/slct.201900681] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
33 Singh R, Singh S. Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids Surf B Biointerfaces 2019;175:625-35. [PMID: 30583218 DOI: 10.1016/j.colsurfb.2018.12.042] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
34 Rather HA, Thakore R, Singh R, Jhala D, Singh S, Vasita R. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application. Bioact Mater 2018;3:201-11. [PMID: 29744458 DOI: 10.1016/j.bioactmat.2017.09.006] [Cited by in Crossref: 68] [Cited by in F6Publishing: 47] [Article Influence: 13.6] [Reference Citation Analysis]
35 Pardhiya S, Priyadarshini E, Rajamani P. In vitro antioxidant activity of synthesized BSA conjugated manganese dioxide nanoparticles. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-03407-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Saifi MA, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J Control Release 2021;338:164-89. [PMID: 34425166 DOI: 10.1016/j.jconrel.2021.08.033] [Reference Citation Analysis]
37 Tisi A, Passacantando M, Ciancaglini M, Maccarone R. Nanoceria neuroprotective effects in the light-damaged retina: A focus on retinal function and microglia activation. Exp Eye Res 2019;188:107797. [PMID: 31520599 DOI: 10.1016/j.exer.2019.107797] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
38 Tian J, Guo F, Chen Y, Li Y, Yu B, Li Y. Nanoliposomal formulation encapsulating celecoxib and genistein inhibiting COX-2 pathway and Glut-1 receptors to prevent prostate cancer cell proliferation. Cancer Letters 2019;448:1-10. [DOI: 10.1016/j.canlet.2019.01.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
39 Leibrock L, Wagener S, Singh AV, Laux P, Luch A. Nanoparticle induced barrier function assessment at liquid-liquid and air-liquid interface in novel human lung epithelia cell lines. Toxicol Res (Camb) 2019;8:1016-27. [PMID: 32153768 DOI: 10.1039/c9tx00179d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
40 Montesinos-Cruz V, Rose J, Pappa A, Panayiotidis MI, De Vizcaya-Ruiz A, Franco R. Survival Mechanisms and Xenobiotic Susceptibility of Keratinocytes Exposed to Metal-Derived Nanoparticles. Chem Res Toxicol 2020;33:536-52. [PMID: 31927885 DOI: 10.1021/acs.chemrestox.9b00398] [Reference Citation Analysis]
41 Xue Y, Balmuri SR, Patel A, Sant V, Sant S. Synthesis, physico-chemical characterization, and antioxidant effect of PEGylated cerium oxide nanoparticles. Drug Deliv and Transl Res 2018;8:357-67. [DOI: 10.1007/s13346-017-0396-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
42 Shah K, Bhagat S, Varade D, Singh S. Novel synthesis of polyoxyethylene cholesteryl ether coated Fe-Pt nanoalloys: A multifunctional and cytocompatible bimetallic alloy exhibiting intrinsic chemical catalysis and biological enzyme-like activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;553:50-7. [DOI: 10.1016/j.colsurfa.2018.05.034] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
43 Vila L, García-rodríguez A, Cortés C, Velázquez A, Xamena N, Sampayo-reyes A, Marcos R, Hernández A. Effects of cerium oxide nanoparticles on differentiated/undifferentiated human intestinal Caco-2 cells. Chemico-Biological Interactions 2018;283:38-46. [DOI: 10.1016/j.cbi.2018.01.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
44 Mauro M, Crosera M, Monai M, Montini T, Fornasiero P, Bovenzi M, Adami G, Turco G, Filon FL. Cerium Oxide Nanoparticles Absorption through Intact and Damaged Human Skin. Molecules 2019;24:E3759. [PMID: 31635398 DOI: 10.3390/molecules24203759] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
45 Choi JH, Lee H, Lee H, Lee H. Dopant-Dependent Toxicity of CeO2 Nanoparticles Is Associated with Dynamic Changes in H3K4me3 and H3K27me3 and Transcriptional Activation of NRF2 Gene in HaCaT Human Keratinocytes. Int J Mol Sci 2021;22:3087. [PMID: 33802993 DOI: 10.3390/ijms22063087] [Reference Citation Analysis]
46 Xu Q, Gao X, Wen M, Liu Y, Li Y, Wei C, Wu X, Zou Y, Li J, Li X, Liu YN, Chen W. Biocomputation with MnTiO3 Piezoelectric Enzymes for Programed Catalysis of Tumor Death. ACS Appl Mater Interfaces 2022;14:28199-210. [PMID: 35653596 DOI: 10.1021/acsami.2c04950] [Reference Citation Analysis]
47 Yang X, You J, Wei Y, Li H, Gao L, Guo Q, Huang Y, Gong C, Yi C. Emerging nanomaterials applied for tackling the COVID-19 cytokine storm. J Mater Chem B 2021;9:8185-201. [PMID: 34528037 DOI: 10.1039/d1tb01446c] [Reference Citation Analysis]
48 Falchi L, Galleri G, Dore GM, Zedda MT, Pau S, Bogliolo L, Ariu F, Pinna A, Nieddu S, Innocenzi P, Ledda S. Effect of exposure to CeO2 nanoparticles on ram spermatozoa during storage at 4 °C for 96 hours. Reprod Biol Endocrinol 2018;16:19. [PMID: 29510737 DOI: 10.1186/s12958-018-0339-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
49 Janoš P, Henych J, Pfeifer J, Zemanová N, Pilařová V, Milde D, Opletal T, Tolasz J, Malý M, Štengl V. Nanocrystalline cerium oxide prepared from a carbonate precursor and its ability to breakdown biologically relevant organophosphates. Environ Sci : Nano 2017;4:1283-93. [DOI: 10.1039/c7en00119c] [Cited by in Crossref: 17] [Article Influence: 3.4] [Reference Citation Analysis]
50 Podder S, Ghosh CK, Das A, Hardy JG. Light-responsive nanomaterials with pro-oxidant and anti-oxidant activity. emergent mater . [DOI: 10.1007/s42247-022-00361-3] [Reference Citation Analysis]
51 Gharib M, Kornowski A, Noei H, Parak WJ, Chakraborty I. Protein-Protected Porous Bimetallic AgPt Nanoparticles with pH-Switchable Peroxidase/Catalase-Mimicking Activity. ACS Materials Lett 2019;1:310-9. [DOI: 10.1021/acsmaterialslett.9b00164] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
52 Ermakov A, Popov A, Ermakova O, Ivanova O, Baranchikov A, Kamenskikh K, Shekunova T, Shcherbakov A, Popova N, Ivanov V. The first inorganic mitogens: Cerium oxide and cerium fluoride nanoparticles stimulate planarian regeneration via neoblastic activation. Mater Sci Eng C Mater Biol Appl 2019;104:109924. [PMID: 31499991 DOI: 10.1016/j.msec.2019.109924] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
53 Sridharan P, Vinothkumar G, Pratheesh P, Babu KS. Biomimetic potential of cerium oxide nanoparticles in modulating the metabolic gene signature in GBM-derived cell lines. J Mater Sci 2020;55:11622-36. [DOI: 10.1007/s10853-020-04872-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Opitz P, Jegel O, Nasir J, Rios-Studer T, Gazanis A, Pham DH, Domke K, Heermann R, Schmedt Auf der Günne J, Tremel W. Defect-controlled halogenating properties of lanthanide-doped ceria nanozymes. Nanoscale 2022;14:4740-52. [PMID: 35266939 DOI: 10.1039/d2nr00501h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Yadav N, Singh S. Polyoxometalate-Mediated Vacancy-Engineered Cerium Oxide Nanoparticles Exhibiting Controlled Biological Enzyme-Mimicking Activities. Inorg Chem 2021;60:7475-89. [PMID: 33939401 DOI: 10.1021/acs.inorgchem.1c00766] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]