BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Y, Bilbao A, Bruderer T, Luban J, Strambio-De-Castillia C, Lisacek F, Hopfgartner G, Varesio E. The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition. J Proteome Res 2015;14:4359-71. [PMID: 26302369 DOI: 10.1021/acs.jproteome.5b00543] [Cited by in Crossref: 104] [Cited by in F6Publishing: 94] [Article Influence: 14.9] [Reference Citation Analysis]
Number Citing Articles
1 Bonner R, Hopfgartner G. SWATH acquisition mode for drug metabolism and metabolomics investigations. Bioanalysis 2016;8:1735-50. [DOI: 10.4155/bio-2016-0141] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
2 Karuna M P, Witte L, Linnemannstoens K, Choezom D, Danieli-Mackay A, Honemann-Capito M, Gross JC. Phosphorylation of Ykt6 SNARE Domain Regulates Its Membrane Recruitment and Activity. Biomolecules 2020;10:E1560. [PMID: 33207719 DOI: 10.3390/biom10111560] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Govaert E, Van Steendam K, Willems S, Vossaert L, Dhaenens M, Deforce D. Comparison of fractionation proteomics for local SWATH library building. Proteomics 2017;17. [PMID: 28664598 DOI: 10.1002/pmic.201700052] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
4 de Albuquerque Cavalcanti G, Moreira Borges R, Reis Alves Carneiro G, Costa Padilha M, Gualberto Pereira HM. Variable Data Independent Acquisition and Data Mining Exploring Feature-Based Molecular Networking Analysis for Untargeted Screening of Synthetic Cannabinoids in Oral Fluid. J Am Soc Mass Spectrom 2021;32:2417-24. [PMID: 34399051 DOI: 10.1021/jasms.1c00124] [Reference Citation Analysis]
5 Bilbao A, Zhang Y, Varesio E, Luban J, Strambio-De-Castillia C, Lisacek F, Hopfgartner G. Ranking Fragment Ions Based on Outlier Detection for Improved Label-Free Quantification in Data-Independent Acquisition LC-MS/MS. J Proteome Res 2015;14:4581-93. [PMID: 26412574 DOI: 10.1021/acs.jproteome.5b00394] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
6 González-Fernández MJ, Fabrikov D, Ramos-Bueno RP, Guil-Guerrero JL, Ortea I. SWATH Differential Abundance Proteomics and Cellular Assays Show In Vitro Anticancer Activity of Arachidonic Acid- and Docosahexaenoic Acid-Based Monoacylglycerols in HT-29 Colorectal Cancer Cells. Nutrients 2019;11:E2984. [PMID: 31817645 DOI: 10.3390/nu11122984] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
7 Ždralević M, Brand A, Di Ianni L, Dettmer K, Reinders J, Singer K, Peter K, Schnell A, Bruss C, Decking SM, Koehl G, Felipe-Abrio B, Durivault J, Bayer P, Evangelista M, O'Brien T, Oefner PJ, Renner K, Pouysségur J, Kreutz M. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism. J Biol Chem 2018;293:15947-61. [PMID: 30158244 DOI: 10.1074/jbc.RA118.004180] [Cited by in Crossref: 69] [Cited by in F6Publishing: 38] [Article Influence: 17.3] [Reference Citation Analysis]
8 Li S, Cao Q, Xiao W, Guo Y, Yang Y, Duan X, Shui W. Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry. J Proteome Res 2017;16:738-47. [PMID: 27995803 DOI: 10.1021/acs.jproteome.6b00767] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
9 Schlotterbeck J, Cebo M, Kolb A, Lämmerhofer M. Quantitative analysis of chemoresistance-inducing fatty acid in food supplements using UHPLC-ESI-MS/MS. Anal Bioanal Chem 2019;411:479-91. [PMID: 30460390 DOI: 10.1007/s00216-018-1468-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
10 Drotleff B, Roth SR, Henkel K, Calderón C, Schlotterbeck J, Neukamm MA, Lämmerhofer M. Lipidomic profiling of non-mineralized dental plaque and biofilm by untargeted UHPLC-QTOF-MS/MS and SWATH acquisition. Anal Bioanal Chem 2020;412:2303-14. [PMID: 31942654 DOI: 10.1007/s00216-019-02364-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
11 Karaszewski B, Gójska-Grymajło A, Czaplewska P, Jabłoński B, Lewandowska AE, Ossowska D, Wyszomirski A, Hałas M, Szurowska E. SWATH-MS for prospective identification of protein blood biomarkers of rtPA-associated intracranial hemorrhage in acute ischemic stroke: a pilot study. Sci Rep 2021;11:18765. [PMID: 34548538 DOI: 10.1038/s41598-021-97710-9] [Reference Citation Analysis]
12 Bittremieux W, Walzer M, Tenzer S, Zhu W, Salek RM, Eisenacher M, Tabb DL. The Human Proteome Organization-Proteomics Standards Initiative Quality Control Working Group: Making Quality Control More Accessible for Biological Mass Spectrometry. Anal Chem 2017;89:4474-9. [PMID: 28318237 DOI: 10.1021/acs.analchem.6b04310] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
13 Chien HJ, Huang YH, Zheng YF, Wang WC, Kuo CY, Wei GJ, Lai CC. Proteomics for species authentication of cod and corresponding fishery products. Food Chem 2021;:131631. [PMID: 34838403 DOI: 10.1016/j.foodchem.2021.131631] [Reference Citation Analysis]
14 Guo Z, Zhu Z, Huang S, Wang J. Non-targeted screening of pesticides for food analysis using liquid chromatography high-resolution mass spectrometry-a review. Food Additives & Contaminants: Part A 2020;37:1180-201. [DOI: 10.1080/19440049.2020.1753890] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
15 Zhang H, Bensaddek D. Narrow Precursor Mass Range for DIA-MS Enhances Protein Identification and Quantification in Arabidopsis. Life (Basel) 2021;11:982. [PMID: 34575131 DOI: 10.3390/life11090982] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Amodei D, Egertson J, MacLean BX, Johnson R, Merrihew GE, Keller A, Marsh D, Vitek O, Mallick P, MacCoss MJ. Improving Precursor Selectivity in Data-Independent Acquisition Using Overlapping Windows. J Am Soc Mass Spectrom 2019;30:669-84. [PMID: 30671891 DOI: 10.1007/s13361-018-2122-8] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 10.7] [Reference Citation Analysis]
17 van der Laan T, Boom I, Maliepaard J, Dubbelman AC, Harms AC, Hankemeier T. Data-Independent Acquisition for the Quantification and Identification of Metabolites in Plasma. Metabolites 2020;10:E514. [PMID: 33353236 DOI: 10.3390/metabo10120514] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
18 Allen DR, McWhinney BC. Quadrupole Time-of-Flight Mass Spectrometry: A Paradigm Shift in Toxicology Screening Applications. Clin Biochem Rev 2019;40:135-46. [PMID: 31530964 DOI: 10.33176/AACB-19-00023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
19 Barbier Saint Hilaire P, Rousseau K, Seyer A, Dechaumet S, Damont A, Junot C, Fenaille F. Comparative Evaluation of Data Dependent and Data Independent Acquisition Workflows Implemented on an Orbitrap Fusion for Untargeted Metabolomics. Metabolites 2020;10:E158. [PMID: 32325648 DOI: 10.3390/metabo10040158] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
20 Whitman JD, Lynch KL. Optimization and Comparison of Information-Dependent Acquisition (IDA) to Sequential Window Acquisition of All Theoretical Fragment Ion Spectra (SWATH) for High-Resolution Mass Spectrometry in Clinical Toxicology. Clin Chem 2019;65:862-70. [PMID: 30996055 DOI: 10.1373/clinchem.2018.300756] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
21 Lin L, Zheng J, Yu Q, Chen W, Xing J, Chen C, Tian R. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. J Proteomics 2018;174:9-16. [PMID: 29278786 DOI: 10.1016/j.jprot.2017.12.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
22 Zhong C, Wu R, Chen X, Wu S, Shuai J, Han J. Systematic Assessment of the Effect of Internal Library in Targeted Analysis of SWATH-MS. J Proteome Res 2020;19:477-92. [DOI: 10.1021/acs.jproteome.9b00669] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
23 Chatterjee M, Rath D, Schlotterbeck J, Rheinlaender J, Walker-allgaier B, Alnaggar N, Zdanyte M, Müller I, Borst O, Geisler T, Schäffer TE, Lämmerhofer M, Gawaz M. Regulation of oxidized platelet lipidome: implications for coronary artery disease. European Heart Journal 2017;38:1993-2005. [DOI: 10.1093/eurheartj/ehx146] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 9.0] [Reference Citation Analysis]
24 Erdmann J, Thöming JG, Pohl S, Pich A, Lenz C, Häussler S. The Core Proteome of Biofilm-Grown Clinical Pseudomonas aeruginosa Isolates. Cells 2019;8:E1129. [PMID: 31547513 DOI: 10.3390/cells8101129] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
25 Bonner R, Hopfgartner G. SWATH data independent acquisition mass spectrometry for metabolomics. TrAC Trends in Analytical Chemistry 2019;120:115278. [DOI: 10.1016/j.trac.2018.10.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 11.7] [Reference Citation Analysis]
26 Lozano A, Ferrer C, Fernández-Alba AR. Selectivity enhancement using sequential mass isolation window acquisition with hybrid quadrupole time-of-flight mass spectrometry for pesticide residues. J Chromatogr A 2019;1591:99-109. [PMID: 30658912 DOI: 10.1016/j.chroma.2019.01.019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
27 Nash WJ, Dunn WB. From mass to metabolite in human untargeted metabolomics: Recent advances in annotation of metabolites applying liquid chromatography-mass spectrometry data. TrAC Trends in Analytical Chemistry 2019;120:115324. [DOI: 10.1016/j.trac.2018.11.022] [Cited by in Crossref: 34] [Cited by in F6Publishing: 11] [Article Influence: 11.3] [Reference Citation Analysis]
28 Wang G, Meyer JG, Cai W, Softic S, Li ME, Verdin E, Newgard C, Schilling B, Kahn CR. Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation. Mol Cell 2019;74:844-857.e7. [PMID: 31000437 DOI: 10.1016/j.molcel.2019.03.021] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 15.3] [Reference Citation Analysis]
29 Nakajima D, Ohara O, Kawashima Y. Data-Independent Acquisition Mass Spectrometry-Based Deep Proteome Analysis for Hydrophobic Proteins from Dried Blood Spots Enriched by Sodium Carbonate Precipitation. Methods Mol Biol 2022;2420:39-52. [PMID: 34905164 DOI: 10.1007/978-1-0716-1936-0_4] [Reference Citation Analysis]
30 Krisp C, Molloy MP. SWATH Mass Spectrometry for Proteomics of Non-Depleted Plasma. Methods Mol Biol 2017;1619:373-83. [PMID: 28674897 DOI: 10.1007/978-1-4939-7057-5_25] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
31 Sanwald C, Robciuc A, Ruokonen SK, Wiedmer SK, Lämmerhofer M. A combined targeted/untargeted LC-MS/MS-based screening approach for mammalian cell lines treated with ionic liquids: Toxicity correlates with metabolic profile. Talanta 2019;197:472-81. [PMID: 30771964 DOI: 10.1016/j.talanta.2019.01.054] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
32 Drotleff B, Illison J, Schlotterbeck J, Lukowski R, Lämmerhofer M. Comprehensive lipidomics of mouse plasma using class-specific surrogate calibrants and SWATH acquisition for large-scale lipid quantification in untargeted analysis. Anal Chim Acta 2019;1086:90-102. [PMID: 31561798 DOI: 10.1016/j.aca.2019.08.030] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
33 Kleis J, Hess C, Germerott T, Roehrich J. Sensitive Screening of New Psychoactive Substances in Serum Using Liquid-Chromatography Quadrupole Time-of-Flight Mass Spectrometry. J Anal Toxicol 2021:bkab072. [PMID: 34125215 DOI: 10.1093/jat/bkab072] [Reference Citation Analysis]
34 Sebald K, Dunkel A, Hofmann T. Mapping Taste-Relevant Food Peptidomes by Means of Sequential Window Acquisition of All Theoretical Fragment Ion-Mass Spectrometry. J Agric Food Chem 2020;68:10287-98. [PMID: 31508943 DOI: 10.1021/acs.jafc.9b04581] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
35 Chen L, Gao Y, Wang LZ, Cheung N, Tan GSW, Cheung GCM, Beuerman RW, Wong TY, Chan ECY, Zhou L. Recent advances in the applications of metabolomics in eye research. Anal Chim Acta 2018;1037:28-40. [PMID: 30292303 DOI: 10.1016/j.aca.2018.01.060] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
36 Lin L, Yu Q, Zheng J, Cai Z, Tian R. Fast quantitative urinary proteomic profiling workflow for biomarker discovery in kidney cancer. Clin Proteomics 2018;15:42. [PMID: 30607141 DOI: 10.1186/s12014-018-9220-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
37 Zhao M, Liu X, Sun H, Guo Z, Liu X, Sun W. Evaluation of Urinary Proteome Library Generation Methods on Data‐Independent Acquisition MS Analysis and its Application in Normal Urinary Proteome Analysis. Prot Clin Appl 2019;13:1800152. [DOI: 10.1002/prca.201800152] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Yan Z, Li T, Wei B, Wang P, Wan J, Wang Y, Yan R. High-resolution MS/MS metabolomics by data-independent acquisition reveals urinary metabolic alteration in experimental colitis. Metabolomics 2019;15:70. [PMID: 31041724 DOI: 10.1007/s11306-019-1534-1] [Reference Citation Analysis]
39 Pino LK, Just SC, MacCoss MJ, Searle BC. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries. Mol Cell Proteomics 2020;19:1088-103. [PMID: 32312845 DOI: 10.1074/mcp.P119.001913] [Cited by in Crossref: 30] [Cited by in F6Publishing: 10] [Article Influence: 15.0] [Reference Citation Analysis]
40 Peper J, Kownatzki-Danger D, Weninger G, Seibertz F, Pronto JRD, Sutanto H, Pacheu-Grau D, Hindmarsh R, Brandenburg S, Kohl T, Hasenfuss G, Gotthardt M, Rog-Zielinska EA, Wollnik B, Rehling P, Urlaub H, Wegener J, Heijman J, Voigt N, Cyganek L, Lenz C, Lehnart SE. Caveolin3 Stabilizes McT1-Mediated Lactate/Proton Transport in Cardiomyocytes. Circ Res 2021;128:e102-20. [PMID: 33486968 DOI: 10.1161/CIRCRESAHA.119.316547] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
41 Kawashima Y, Watanabe E, Umeyama T, Nakajima D, Hattori M, Honda K, Ohara O. Optimization of Data-Independent Acquisition Mass Spectrometry for Deep and Highly Sensitive Proteomic Analysis. Int J Mol Sci 2019;20:E5932. [PMID: 31779068 DOI: 10.3390/ijms20235932] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
42 Meyer JG, Schilling B. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev Proteomics 2017;14:419-29. [PMID: 28436239 DOI: 10.1080/14789450.2017.1322904] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 16.3] [Reference Citation Analysis]
43 Jevtić Ž, Stoll B, Pfeiffer F, Sharma K, Urlaub H, Marchfelder A, Lenz C. The Response of Haloferax volcanii to Salt and Temperature Stress: A Proteome Study by Label-Free Mass Spectrometry. Proteomics 2019;19:e1800491. [PMID: 31502396 DOI: 10.1002/pmic.201800491] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
44 Bruderer T, Varesio E, Hidasi AO, Duchoslav E, Burton L, Bonner R, Hopfgartner G. Metabolomic spectral libraries for data-independent SWATH liquid chromatography mass spectrometry acquisition. Anal Bioanal Chem 2018;410:1873-84. [PMID: 29411086 DOI: 10.1007/s00216-018-0860-x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
45 Périat A, Bieri S, Mottier N. SWATH-MS screening strategy for the determination of food dyes in spices by UHPLC-HRMS. Food Chem X 2019;1:100009. [PMID: 31432009 DOI: 10.1016/j.fochx.2019.100009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
46 Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev 2020;39:229-44. [PMID: 28691345 DOI: 10.1002/mas.21540] [Cited by in Crossref: 162] [Cited by in F6Publishing: 134] [Article Influence: 32.4] [Reference Citation Analysis]
47 Meyer JG, Garcia TY, Schilling B, Gibson BW, Lamba DA. Proteome and Secretome Dynamics of Human Retinal Pigment Epithelium in Response to Reactive Oxygen Species. Sci Rep 2019;9:15440. [PMID: 31659173 DOI: 10.1038/s41598-019-51777-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
48 Coy-Vergara J, Rivera-Monroy J, Urlaub H, Lenz C, Schwappach B. A trap mutant reveals the physiological client spectrum of TRC40. J Cell Sci 2019;132:jcs230094. [PMID: 31182645 DOI: 10.1242/jcs.230094] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
49 Raetz M, Duchoslav E, Bonner R, Hopfgartner G. Hybrid SWATH/MS and HR-SRM/MS acquisition for phospholipidomics using QUAL/QUANT data processing. Anal Bioanal Chem 2019;411:5681-90. [PMID: 31201456 DOI: 10.1007/s00216-019-01946-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
50 Yin Y, Wang R, Cai Y, Wang Z, Zhu ZJ. DecoMetDIA: Deconvolution of Multiplexed MS/MS Spectra for Metabolite Identification in SWATH-MS-Based Untargeted Metabolomics. Anal Chem 2019;91:11897-904. [PMID: 31436405 DOI: 10.1021/acs.analchem.9b02655] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
51 Zhou C, Schulz BL. Glycopeptide variable window SWATH for improved data independent acquisition glycoprotein analysis. Anal Biochem 2020;597:113667. [PMID: 32119847 DOI: 10.1016/j.ab.2020.113667] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
52 Kang Y, Burton L, Lau A, Tate S. SWATH-ID: An instrument method which combines identification and quantification in a single analysis. Proteomics 2017;17:e1500522. [PMID: 28387034 DOI: 10.1002/pmic.201500522] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
53 Bruderer T, Varesio E, Hopfgartner G. The use of LC predicted retention times to extend metabolites identification with SWATH data acquisition. Journal of Chromatography B 2017;1071:3-10. [DOI: 10.1016/j.jchromb.2017.07.016] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 5.4] [Reference Citation Analysis]
54 Linnemannstöns K, Witte L, Karuna M P, Kittel JC, Danieli A, Müller D, Nitsch L, Honemann-Capito M, Grawe F, Wodarz A, Gross JC. Ykt6-dependent endosomal recycling is required for Wnt secretion in the Drosophila wing epithelium. Development 2020;147:dev185421. [PMID: 32611603 DOI: 10.1242/dev.185421] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
55 Raetz M, Bonner R, Hopfgartner G. SWATH-MS for metabolomics and lipidomics: critical aspects of qualitative and quantitative analysis. Metabolomics 2020;16. [DOI: 10.1007/s11306-020-01692-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
56 Gotti C, Roux-Dalvai F, Joly-Beauparlant C, Mangnier L, Leclercq M, Droit A. Extensive and Accurate Benchmarking of DIA Acquisition Methods and Software Tools Using a Complex Proteomic Standard. J Proteome Res 2021;20:4801-14. [PMID: 34472865 DOI: 10.1021/acs.jproteome.1c00490] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Carlyle BC, Trombetta BA, Arnold SE. Proteomic Approaches for the Discovery of Biofluid Biomarkers of Neurodegenerative Dementias. Proteomes 2018;6:32. [PMID: 30200280 DOI: 10.3390/proteomes6030032] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 7.5] [Reference Citation Analysis]
58 Serrano-Blesa E, Porter A, Lendrem DW, Pitzalis C, Barton A, Treumann A, Isaacs JD. Robust optimization of SWATH-MS workflow for human blood serum proteome analysis using a quality by design approach. Clin Proteomics 2021;18:20. [PMID: 34384350 DOI: 10.1186/s12014-021-09323-z] [Reference Citation Analysis]
59 Lewandowska AE, Fel A, Thiel M, Czaplewska P, Łukaszuk K, Wiśniewski JR, Ołdziej S. Compatibility of Distinct Label-Free Proteomic Workflows in Absolute Quantification of Proteins Linked to the Oocyte Quality in Human Follicular Fluid. Int J Mol Sci 2021;22:7415. [PMID: 34299044 DOI: 10.3390/ijms22147415] [Reference Citation Analysis]
60 Cai X, Ge W, Yi X, Sun R, Zhu J, Lu C, Sun P, Zhu T, Ruan G, Yuan C, Liang S, Lyu M, Huang S, Zhu Y, Guo T. PulseDIA: Data-Independent Acquisition Mass Spectrometry Using Multi-Injection Pulsed Gas-Phase Fractionation. J Proteome Res 2021;20:279-88. [PMID: 32975123 DOI: 10.1021/acs.jproteome.0c00381] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
61 Hellinger JW, Schömel F, Buse JV, Lenz C, Bauerschmitz G, Emons G, Gründker C. Identification of drivers of breast cancer invasion by secretome analysis: insight into CTGF signaling. Sci Rep 2020;10:17889. [PMID: 33087801 DOI: 10.1038/s41598-020-74838-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
62 Fiołka MJ, Czaplewska P, Wójcik-Mieszawska S, Lewandowska A, Lewtak K, Sofińska-Chmiel W, Buchwald T. Metabolic, structural, and proteomic changes in Candida albicans cells induced by the protein-carbohydrate fraction of Dendrobaena veneta coelomic fluid. Sci Rep 2021;11:16711. [PMID: 34408181 DOI: 10.1038/s41598-021-96093-1] [Reference Citation Analysis]
63 Calderón C, Sanwald C, Schlotterbeck J, Drotleff B, Lämmerhofer M. Comparison of simple monophasic versus classical biphasic extraction protocols for comprehensive UHPLC-MS/MS lipidomic analysis of Hela cells. Analytica Chimica Acta 2019;1048:66-74. [DOI: 10.1016/j.aca.2018.10.035] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
64 Fenaille F, Barbier Saint-Hilaire P, Rousseau K, Junot C. Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: Where do we stand? J Chromatogr A 2017;1526:1-12. [PMID: 29074071 DOI: 10.1016/j.chroma.2017.10.043] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 11.2] [Reference Citation Analysis]
65 De Clerck L, Willems S, Noberini R, Restellini C, Van Puyvelde B, Daled S, Bonaldi T, Deforce D, Dhaenens M. hSWATH: Unlocking SWATH's Full Potential for an Untargeted Histone Perspective. J Proteome Res 2019;18:3840-9. [PMID: 31429292 DOI: 10.1021/acs.jproteome.9b00214] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
66 Kaufmann A, Walker S. Nested data independent MS/MS acquisition. Anal Bioanal Chem 2016;408:5031-40. [DOI: 10.1007/s00216-016-9607-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
67 N Diaye K, Debong M, Behr J, Dirndorfer S, Duggan T, Beusch A, Schlagbauer V, Dawid C, Loos HM, Buettner A, Lang R, Hofmann T. Dietary Piperine is Transferred into the Milk of Nursing Mothers. Mol Nutr Food Res 2021;:e2100508. [PMID: 34633734 DOI: 10.1002/mnfr.202100508] [Reference Citation Analysis]
68 O'Rourke MB, Sahni S, Samra J, Mittal A, Molloy MP. Data independent acquisition of plasma biomarkers of response to neoadjuvant chemotherapy in pancreatic ductal adenocarcinoma. J Proteomics 2021;231:103998. [PMID: 33027703 DOI: 10.1016/j.jprot.2020.103998] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
69 Xiao W, Duan X, Lin Y, Cao Q, Li S, Guo Y, Gan Y, Qi X, Zhou Y, Guo L, Qin P, Wang Q, Shui W. Distinct Proteome Remodeling of Industrial Saccharomyces cerevisiae in Response to Prolonged Thermal Stress or Transient Heat Shock. J Proteome Res 2018;17:1812-25. [PMID: 29611422 DOI: 10.1021/acs.jproteome.7b00842] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
70 Goh WWB, Wong L. Advanced bioinformatics methods for practical applications in proteomics. Brief Bioinform 2019;20:347-55. [PMID: 30657890 DOI: 10.1093/bib/bbx128] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
71 Anjo SI, Santa C, Manadas B. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics 2017;17:1600278. [DOI: 10.1002/pmic.201600278] [Cited by in Crossref: 86] [Cited by in F6Publishing: 81] [Article Influence: 17.2] [Reference Citation Analysis]
72 Schwaber JL, Korbie D, Andersen S, Lin E, Chrysanthopoulos PK, Trau M, Nielsen LK. Network mapping of primary CD34+ cells by Ampliseq based whole transcriptome targeted resequencing identifies unexplored differentiation regulatory relationships. PLoS One 2021;16:e0246107. [PMID: 33544756 DOI: 10.1371/journal.pone.0246107] [Reference Citation Analysis]
73 Anjo SI, Melo MN, Loureiro LR, Sabala L, Castanheira P, Grãos M, Manadas B. oxSWATH: An integrative method for a comprehensive redox-centered analysis combined with a generic differential proteomics screening. Redox Biol 2019;22:101130. [PMID: 30737169 DOI: 10.1016/j.redox.2019.101130] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
74 Altenbuchinger M, Schwarzfischer P, Rehberg T, Reinders J, Kohler CW, Gronwald W, Richter J, Szczepanowski M, Masqué-Soler N, Klapper W, Oefner PJ, Spang R. Molecular signatures that can be transferred across different omics platforms. Bioinformatics 2017;33:i333-40. [PMID: 28881975 DOI: 10.1093/bioinformatics/btx241] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
75 Parrilla Vázquez P, Lozano A, Ferrer C, Martínez Bueno MJ, Fernández-alba AR. Improvements in identification and quantitation of pesticide residues in food by LC-QTOF using sequential mass window acquisition (SWATH®). Anal Methods 2018;10:2821-33. [DOI: 10.1039/c8ay00678d] [Cited by in Crossref: 17] [Article Influence: 4.3] [Reference Citation Analysis]
76 Peña-Herrera JM, Montemurro N, Barceló D, Pérez S. Development and validation of an analytical method for determination of pharmaceuticals in fish muscle based on QuEChERS extraction and SWATH acquisition using LC-QTOF-MS/MS system. Talanta 2019;199:370-9. [PMID: 30952272 DOI: 10.1016/j.talanta.2019.01.119] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
77 Völkel S, Hein S, Benker N, Pfeifer F, Lenz C, Losensky G. How to Cope With Heavy Metal Ions: Cellular and Proteome-Level Stress Response to Divalent Copper and Nickel in Halobacterium salinarum R1 Planktonic and Biofilm Cells. Front Microbiol 2019;10:3056. [PMID: 32010107 DOI: 10.3389/fmicb.2019.03056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
78 Wang R, Yin Y, Zhu ZJ. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal Bioanal Chem 2019;411:4349-57. [PMID: 30847570 DOI: 10.1007/s00216-019-01709-1] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 12.7] [Reference Citation Analysis]
79 Lewandowska AE, Macur K, Czaplewska P, Liss J, Łukaszuk K, Ołdziej S. Human follicular fluid proteomic and peptidomic composition quantitative studies by SWATH-MS methodology. Applicability of high pH RP-HPLC fractionation. J Proteomics 2019;191:131-42. [PMID: 29530678 DOI: 10.1016/j.jprot.2018.03.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
80 Dozio V, Sanchez JC. Profiling the proteomic inflammatory state of human astrocytes using DIA mass spectrometry. J Neuroinflammation 2018;15:331. [PMID: 30501627 DOI: 10.1186/s12974-018-1371-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
81 Reinders J, Altenbuchinger M, Limm K, Schwarzfischer P, Scheidt T, Strasser L, Richter J, Szczepanowski M, Huber CG, Klapper W, Spang R, Oefner PJ. Platform independent protein-based cell-of-origin subtyping of diffuse large B-cell lymphoma in formalin-fixed paraffin-embedded tissue. Sci Rep 2020;10:7876. [PMID: 32398793 DOI: 10.1038/s41598-020-64212-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
82 Kraut A, Louwagie M, Bruley C, Masselon C, Couté Y, Brun V, Hesse A. Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry. In: Brun V, Couté Y, editors. Proteomics for Biomarker Discovery. New York: Springer; 2019. pp. 129-50. [DOI: 10.1007/978-1-4939-9164-8_9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
83 Álvarez-ruiz R, Picó Y. Sequential window acquisition of all theoretical fragments versus information dependent acquisition for suspected-screening of pharmaceuticals in sediments and mussels by ultra-high pressure liquid chromatography-quadrupole time-of-flight-mass spectrometry. Journal of Chromatography A 2019;1595:81-90. [DOI: 10.1016/j.chroma.2019.02.041] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
84 [DOI: 10.1101/2020.11.03.365585] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
85 Calderón C, Rubarth L, Cebo M, Merfort I, Lämmerhofer M. Lipid Atlas of Keratinocytes and Betulin Effects on its Lipidome Profiled by Comprehensive UHPLC–MS/MS with Data Independent Acquisition Using Targeted Data Processing. Proteomics 2020;20:1900113. [DOI: 10.1002/pmic.201900113] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
86 Stolle T, Grondinger F, Dunkel A, Hofmann T. Quantitative proteomics and SWATH-MS to elucidate peri-receptor mechanisms in human salt taste sensitivity. Food Chemistry 2018;254:95-102. [DOI: 10.1016/j.foodchem.2018.01.160] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
87 Colgrave ML, Byrne K, Blundell M, Heidelberger S, Lane CS, Tanner GJ, Howitt CA. Comparing Multiple Reaction Monitoring and Sequential Window Acquisition of All Theoretical Mass Spectra for the Relative Quantification of Barley Gluten in Selectively Bred Barley Lines. Anal Chem 2016;88:9127-35. [PMID: 27533879 DOI: 10.1021/acs.analchem.6b02108] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
88 Xu L, Xu Z, Wang X, Wang B, Liao X. The application of pseudotargeted metabolomics method for fruit juices discrimination. Food Chemistry 2020;316:126278. [DOI: 10.1016/j.foodchem.2020.126278] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
89 Bian J, Sze YH, Tse DY, To CH, McFadden SA, Lam CS, Li KK, Lam TC. SWATH Based Quantitative Proteomics Reveals Significant Lipid Metabolism in Early Myopic Guinea Pig Retina. Int J Mol Sci 2021;22:4721. [PMID: 33946922 DOI: 10.3390/ijms22094721] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
90 Schlotterbeck J, Chatterjee M, Gawaz M, Lämmerhofer M. Comprehensive MS/MS profiling by UHPLC-ESI-QTOF-MS/MS using SWATH data-independent acquisition for the study of platelet lipidomes in coronary artery disease. Anal Chim Acta 2019;1046:1-15. [PMID: 30482286 DOI: 10.1016/j.aca.2018.08.060] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
91 Bilbao A. Proteomics Mass Spectrometry Data Analysis Tools. Encyclopedia of Bioinformatics and Computational Biology. Elsevier; 2019. pp. 84-95. [DOI: 10.1016/b978-0-12-809633-8.20274-4] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
92 Schilling B, Gibson BW, Hunter CL. Generation of High-Quality SWATH® Acquisition Data for Label-free Quantitative Proteomics Studies Using TripleTOF® Mass Spectrometers. Methods Mol Biol 2017;1550:223-33. [PMID: 28188533 DOI: 10.1007/978-1-4939-6747-6_16] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
93 Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 2018;14:e8126. [PMID: 30104418 DOI: 10.15252/msb.20178126] [Cited by in Crossref: 305] [Cited by in F6Publishing: 260] [Article Influence: 76.3] [Reference Citation Analysis]
94 Xu L, Xu Z, Strashnov I, Liao X. Use of information dependent acquisition mass spectra and sequential window acquisition of all theoretical fragment-ion mass spectra for fruit juices metabolomics and authentication. Metabolomics 2020;16:81. [PMID: 32638130 DOI: 10.1007/s11306-020-01701-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
95 Ortea I, Ruiz-Sánchez I, Cañete R, Caballero-Villarraso J, Cañete MD. Identification of candidate serum biomarkers of childhood-onset growth hormone deficiency using SWATH-MS and feature selection. J Proteomics 2018;175:105-13. [PMID: 29317355 DOI: 10.1016/j.jprot.2018.01.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
96 Parker SJ, Holewinski RJ, Tchernyshyov I, Venkatraman V, Parker L, Van Eyk JE. Label-Free Quantification by Data Independent Acquisition Mass Spectrometry to Map Cardiovascular Proteomes. In: Agnetti G, Lindsey ML, Foster DB, editors. Manual of Cardiovascular Proteomics. Cham: Springer International Publishing; 2016. pp. 227-45. [DOI: 10.1007/978-3-319-31828-8_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
97 Smith BJ, Martins-de-souza D, Fioramonte M. A Guide to Mass Spectrometry-Based Quantitative Proteomics. In: Guest PC, editor. Pre-Clinical Models. New York: Springer; 2019. pp. 3-39. [DOI: 10.1007/978-1-4939-8994-2_1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
98 Wang L, Su B, Zeng Z, Li C, Zhao X, Lv W, Xuan Q, Ouyang Y, Zhou L, Yin P, Peng X, Lu X, Lin X, Xu G. Ion-Pair Selection Method for Pseudotargeted Metabolomics Based on SWATH MS Acquisition and Its Application in Differential Metabolite Discovery of Type 2 Diabetes. Anal Chem 2018;90:11401-8. [PMID: 30148611 DOI: 10.1021/acs.analchem.8b02377] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
99 Dozio V, Daali Y, Desmeules J, Sanchez JC. Deep proteomics and phosphoproteomics reveal novel biological pathways perturbed by morphine, morphine-3-glucuronide and morphine-6-glucuronide in human astrocytes. J Neurosci Res 2020. [PMID: 32954564 DOI: 10.1002/jnr.24731] [Reference Citation Analysis]