BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lamch Ł, Tylus W, Jewgiński M, Latajka R, Wilk KA. Location of Varying Hydrophobicity Zinc(II) Phthalocyanine-Type Photosensitizers in Methoxy Poly(ethylene oxide) and Poly(l-lactide) Block Copolymer Micelles Using 1H NMR and XPS Techniques. J Phys Chem B 2016;120:12768-80. [PMID: 27973818 DOI: 10.1021/acs.jpcb.6b10267] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Lamch Ł, Wilk KA, Dékány I, Deák Á, Hornok V, Janovák L. Rational Mitomycin Nanocarriers Based on Hydrophobically Functionalized Polyelectrolytes and Poly(lactide-co-glycolide). Langmuir 2022. [PMID: 35442685 DOI: 10.1021/acs.langmuir.1c03360] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Obata M, Ishihara E, Hirohara S. Effect of tertiary amino groups in the hydrophobic segment of an amphiphilic block copolymer on zinc phthalocyanine encapsulation and photodynamic activity. RSC Adv 2022;12:18144-53. [DOI: 10.1039/d2ra02224a] [Reference Citation Analysis]
3 Borzęcka W, Domiński A, Kowalczuk M. Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. Nanomaterials (Basel) 2021;11:2426. [PMID: 34578740 DOI: 10.3390/nano11092426] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Lamch Ł, Gancarz R, Tsirigotis-Maniecka M, Moszyńska IM, Ciejka J, Wilk KA. Studying the "Rigid-Flexible" Properties of Polymeric Micelle Core-Forming Segments with a Hydrophobic Phthalocyanine Probe Using NMR and UV Spectroscopy. Langmuir 2021;37:4316-30. [PMID: 33794644 DOI: 10.1021/acs.langmuir.1c00328] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Gjuroski I, Furrer J, Vermathen M. Probing the Interactions of Porphyrins with Macromolecules Using NMR Spectroscopy Techniques. Molecules 2021;26:1942. [PMID: 33808335 DOI: 10.3390/molecules26071942] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
6 Reddy G, Gaspera ED, Jones LA, Giribabu L. Self-assembly of a symmetrical dimethoxyphenyl substituted Zn(II) phthalocyanine into nanoparticles with enhanced NIR absorbance for singlet oxygen generation. Journal of Photochemistry and Photobiology A: Chemistry 2021;408:113123. [DOI: 10.1016/j.jphotochem.2020.113123] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Obata M, Masuda S, Takahashi M, Yazaki K, Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. European Polymer Journal 2021;147:110325. [DOI: 10.1016/j.eurpolymj.2021.110325] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Tokarska K, Lamch Ł, Piechota B, Żukowski K, Chudy M, Wilk KA, Brzózka Z. Co-delivery of IR-768 and daunorubicin using mPEG-b-PLGA micelles for synergistic enhancement of combination therapy of melanoma. J Photochem Photobiol B 2020;211:111981. [PMID: 32862088 DOI: 10.1016/j.jphotobiol.2020.111981] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
9 Lamch Ł, Ronka S, Warszyński P, Wilk KA. NMR studies of self-organization behavior of hydrophobically functionalized poly(4-styrenosulfonic-co-maleic acid) in aqueous solution. Journal of Molecular Liquids 2020;308:112990. [DOI: 10.1016/j.molliq.2020.112990] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Lamch Ł, Ronka S, Moszyńska I, Warszyński P, Wilk KA. Hydrophobically Functionalized Poly(Acrylic Acid) Comprising the Ester-Type Labile Spacer: Synthesis and Self-Organization in Water. Polymers (Basel) 2020;12:E1185. [PMID: 32455970 DOI: 10.3390/polym12051185] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Guan W, Yang T, Lu C. Measurement of Solubilization Location in Micelles Using Anchored Aggregation‐Induced Emission Donors. Angew Chem 2020;132:12900-5. [DOI: 10.1002/ange.202005085] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
12 Guan W, Yang T, Lu C. Measurement of Solubilization Location in Micelles Using Anchored Aggregation‐Induced Emission Donors. Angew Chem Int Ed 2020;59:12800-5. [DOI: 10.1002/anie.202005085] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
13 Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. Beilstein J Nanotechnol 2020;11:180-212. [PMID: 32082960 DOI: 10.3762/bjnano.11.15] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
14 Lamch Ł, Kulbacka J, Dubińska-magiera M, Saczko J, Wilk KA. Folate-directed zinc (II) phthalocyanine loaded polymeric micelles engineered to generate reactive oxygen species for efficacious photodynamic therapy of cancer. Photodiagnosis and Photodynamic Therapy 2019;25:480-91. [DOI: 10.1016/j.pdpdt.2019.02.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
15 Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018;261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 12.0] [Reference Citation Analysis]
16 Zhao Y, Li F, Mao C, Ming X. Multiarm Nanoconjugates for Cancer Cell-Targeted Delivery of Photosensitizers. Mol Pharm 2018;15:2559-69. [PMID: 29764120 DOI: 10.1021/acs.molpharmaceut.8b00088] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
17 Pucek A, Niezgoda N, Kulbacka J, Wawrzeńczyk C, Wilk KA. Phosphatidylcholine with conjugated linoleic acid in fabrication of novel lipid nanocarriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017;532:377-88. [DOI: 10.1016/j.colsurfa.2017.04.061] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Chudy M, Tokarska K, Jastrzębska E, Bułka M, Drozdek S, Lamch Ł, Wilk KA, Brzózka Z. Lab-on-a-chip systems for photodynamic therapy investigations. Biosens Bioelectron 2018;101:37-51. [PMID: 29035761 DOI: 10.1016/j.bios.2017.10.013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
19 Wu W, Shao X, Zhao J, Wu M. Controllable Photodynamic Therapy Implemented by Regulating Singlet Oxygen Efficiency. Adv Sci (Weinh) 2017;4:1700113. [PMID: 28725533 DOI: 10.1002/advs.201700113] [Cited by in Crossref: 79] [Cited by in F6Publishing: 80] [Article Influence: 15.8] [Reference Citation Analysis]
20 Chiarante N, García Vior MC, Awruch J, Marino J, Roguin LP. Phototoxic action of a zinc(II) phthalocyanine encapsulated into poloxamine polymeric micelles in 2D and 3D colon carcinoma cell cultures. Journal of Photochemistry and Photobiology B: Biology 2017;170:140-51. [DOI: 10.1016/j.jphotobiol.2017.04.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]