BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dai F, Li Q, Wang Y, Ge C, Feng C, Xie S, He H, Xu X, Wang C. Design, Synthesis, and Biological Evaluation of Mitochondria-Targeted Flavone–Naphthalimide–Polyamine Conjugates with Antimetastatic Activity. J Med Chem 2017;60:2071-83. [DOI: 10.1021/acs.jmedchem.6b01846] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Rykowski S, Gurda-Woźna D, Fedoruk-Wyszomirska A, Orlicka-Płocka M, Kowalczyk A, Stączek P, Denel-Bobrowska M, Biniek-Antosiak K, Rypniewski W, Wyszko E, Olejniczak AB. Carboranyl-1,8-naphthalimide intercalators induce lysosomal membrane permeabilization and ferroptosis in cancer cell lines. J Enzyme Inhib Med Chem 2023;38:2171028. [PMID: 36715272 DOI: 10.1080/14756366.2023.2171028] [Reference Citation Analysis]
2 Chen XM, Zhou JY, Liu SQ, Song LH, Wang HL, Wang Q, Liang SM, Lu L, Wei JH, Huang R, Zhang Y. Design, synthesis, and antitumor evaluation of morpholine substituted bisnaphthalimides as DNA targeting agents. Bioorg Med Chem Lett 2023;85:129218. [PMID: 36894107 DOI: 10.1016/j.bmcl.2023.129218] [Reference Citation Analysis]
3 Cheng X, Feng D, Lv J, Cui X, Wang Y, Wang Q, Zhang L. Application Prospects of Triphenylphosphine-Based Mitochondria-Targeted Cancer Therapy. Cancers (Basel) 2023;15. [PMID: 36765624 DOI: 10.3390/cancers15030666] [Reference Citation Analysis]
4 Zhou S, Ding X, Zhao Y, Li J, Luo W. A Flavone-Based Long-Wavelength Fluorescent Probe to Detect Biothiols in vitro and in vivo. Chinese Journal of Organic Chemistry 2023;43:178. [DOI: 10.6023/cjoc202206016] [Reference Citation Analysis]
5 Shi H, Liang C, Yao C, Gao Z, Qin J, Cao J, Zhang M, Li Y, Wang M, Sun H, Xie S, Fang D. Elevation of spermine remodels immunosuppressive microenvironment through driving the modification of PD-L1 in hepatocellular carcinoma. Cell Commun Signal 2022;20:175. [DOI: 10.1186/s12964-022-00981-6] [Reference Citation Analysis]
6 Hari Babu Bollikolla, Tyagi R, Gokada MR, Anandam R, Kasthuri JK, Vijaya Durga T, Alam MM, Mannam KM. Flavones as Important Scaffolds for Anticancer, Antioxidant and Anti-Tubercular Activities: An Overview of Reports 2015–2020. Moscow Univ Chem Bull 2022;77:269-285. [DOI: 10.3103/s0027131422050042] [Reference Citation Analysis]
7 Huang Q, Wang X, Cheng A, Zhang H, Yu Q, Shen C, Awadasseid A, Zhao X, Xiong X, Wu Y, Zhang W. Design, synthesis and anti-tumor activity of novel benzothiophenonaphthalimide derivatives targeting mitochondrial DNA (mtDNA) G-quadruplex. Biochemical Pharmacology 2022. [DOI: 10.1016/j.bcp.2022.115062] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Tandon R, Luxami V, Tandon N, Paul K. Recent Developments on 1,8-Naphthalimide Moiety as Potential Target for Anticancer Agents. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.105677] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhang H, Liao X, Wu X, Shi C, Zhang Y, Yuan Y, Li W, Wang J, Liu Y. Iridium(III) complexes entrapped in liposomes trigger mitochondria-mediated apoptosis and GSDME-mediated pyroptosis. J Inorg Biochem 2022;228:111706. [PMID: 35033830 DOI: 10.1016/j.jinorgbio.2021.111706] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Santos CM, Silva AM. Recent advances in the synthesis of 4H-chromen-4-ones (2012 − 2021). Advances in Heterocyclic Chemistry 2022. [DOI: 10.1016/bs.aihch.2022.02.001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Hu J, Cao T, Yuan B, Guo Y, Zhang J, Zhao J, Zhao X, Hou H. Benzimidazole-quinoline-based copper complexes: Exploration for their possible antitumor mechanism. Polyhedron 2022;211:115563. [DOI: 10.1016/j.poly.2021.115563] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Nichugovskiy A, Tron GC, Maslov M. Recent Advances in the Synthesis of Polyamine Derivatives and Their Applications. Molecules 2021;26:6579. [PMID: 34770986 DOI: 10.3390/molecules26216579] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Wang S, Xu X, Che D, Fan R, Gao M, Cao Y, Ge C, Feng Y, Li J, Xie S, Wang C, Dai F, Gao L, Wang Y. Reactive Oxygen Species Mediate 6c-Induced Mitochondrial and Lysosomal Dysfunction, Autophagic Cell Death, and DNA Damage in Hepatocellular Carcinoma. Int J Mol Sci 2021;22:10987. [PMID: 34681647 DOI: 10.3390/ijms222010987] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Li J, Chen S, Zhao Y, Gong H, Wang T, Ge X, Wang Y, Zhu C, Chen L, Dai F, Xie S, Wang C, Luo W. Design, Synthesis, and Biological Evaluation of Benzo[cd]indol-2(1H)-ones Derivatives as a Lysosome-Targeted Anti-metastatic Agent. Front Oncol 2021;11:733589. [PMID: 34540699 DOI: 10.3389/fonc.2021.733589] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Wang SS, Du SY, He X, Qi YM, Li XL, Rong RX, Cao ZR, Wang KR. Nucleus-targeting imaging and enhanced cytotoxicity based on naphthalimide derivatives. Bioorg Chem 2021;115:105188. [PMID: 34314915 DOI: 10.1016/j.bioorg.2021.105188] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Li W, Wang L, Sun T, Tang H, Bui B, Cao D, Wang R, Chen W. Characterization of nanoparticles combining polyamine detection with photodynamic therapy. Commun Biol 2021;4:803. [PMID: 34211094 DOI: 10.1038/s42003-021-02317-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ge C, Wang Y, Feng Y, Wang S, Zhang K, Xu X, Zhang Z, Zhao Y, Wang Y, Gao L, Dai F, Xie S, Wang C. Suppression of oxidative phosphorylation and IDH2 sensitizes colorectal cancer to a naphthalimide derivative and mitoxantrone. Cancer Lett 2021;519:30-45. [PMID: 34166768 DOI: 10.1016/j.canlet.2021.06.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
18 Ma J, Li L, Yue K, Zhang Z, Su S, Chen Y, Yu L, Zhang P, Ma R, Li Y, Ma Y, Jia H, Wang C, Wang J, Xie S. A naphthalimide-polyamine conjugate preferentially accumulates in hepatic carcinoma metastases as a lysosome-targeted antimetastatic agent. Eur J Med Chem 2021;221:113469. [PMID: 33965862 DOI: 10.1016/j.ejmech.2021.113469] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
19 Wang Y, Ding R, Zhang Z, Zhong C, Wang J, Wang M. Curcumin-loaded liposomes with the hepatic and lysosomal dual-targeted effects for therapy of hepatocellular carcinoma. Int J Pharm 2021;602:120628. [PMID: 33892061 DOI: 10.1016/j.ijpharm.2021.120628] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
20 Lin X, Li L, Li S, Li Q, Xie D, Zhou M, Huang Y. Targeting the Opening of Mitochondrial Permeability Transition Pores Potentiates Nanoparticle Drug Delivery and Mitigates Cancer Metastasis. Adv Sci (Weinh) 2021;8:2002834. [PMID: 33643797 DOI: 10.1002/advs.202002834] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
21 Huang X, Liu Z, Wang M, Yin X, Wang Y, Dai L, Wang H. Platinum(IV) complexes conjugated with chalcone analogs as dual targeting anticancer agents: In vitro and in vivo studies. Bioorg Chem 2020;105:104430. [PMID: 33171407 DOI: 10.1016/j.bioorg.2020.104430] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
22 Tian Z, Tian L, Zhao S, Shi M, Guo S, Wang C, Tian Z, He X. Study on the interaction of polyamine transport (PAT) and 4-Chloro-naphthalimide-homospermidine conjugate (4-ClNAHSPD) by molecular docking and dynamics. J Biomol Struct Dyn 2020;:1-7. [PMID: 32856528 DOI: 10.1080/07391102.2020.1813199] [Reference Citation Analysis]
23 Shi S, Yu S, Quan L, Mansoor M, Chen Z, Hu H, Liu D, Liang Y, Liang F. Synthesis and antitumor activities of transition metal complexes of a bis-Schiff base of 2-hydroxy-1-naphthalenecarboxaldehyde. J Inorg Biochem 2020;210:111173. [PMID: 32683124 DOI: 10.1016/j.jinorgbio.2020.111173] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
24 Ahmed EA, Mohamed MFA, Omran A, Salah H. Synthesis, EGFR-TK inhibition and anticancer activity of new quinoxaline derivatives. Synthetic Communications 2020;50:2924-40. [DOI: 10.1080/00397911.2020.1787448] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
25 Li Q, Yang J, Chen C, Lin X, Zhou M, Zhou Z, Huang Y. A novel mitochondrial targeted hybrid peptide modified HPMA copolymers for breast cancer metastasis suppression. J Control Release 2020;325:38-51. [PMID: 32598957 DOI: 10.1016/j.jconrel.2020.06.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
26 Li Y, Yue K, Li L, Niu J, Liu H, Ma J, Xie S. A Pt(IV)-based mononitro-naphthalimide conjugate with minimized side-effects targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance. Bioorg Chem 2020;101:104011. [PMID: 32599363 DOI: 10.1016/j.bioorg.2020.104011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
27 Ma J, Li Y, Li L, Yue K, Liu H, Wang J, Xi Z, Shi M, Zhao S, Ma Q, Liu S, Guo S, Liu J, Hou L, Wang C, Wang PG, Tian Z, Xie S. A Polyamine-Based Dinitro-Naphthalimide Conjugate as Substrates for Polyamine Transporters Preferentially Accumulates in Cancer Cells and Minimizes Side Effects in vitro and in vivo. Front Chem 2020;8:166. [PMID: 32328475 DOI: 10.3389/fchem.2020.00166] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
28 Li Q, Huang Y. Mitochondrial targeted strategies and their application for cancer and other diseases treatment. J Pharm Investig 2020;50:271-93. [DOI: 10.1007/s40005-020-00481-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
29 Ibrahim TS, Sheha TA, Abo-Dya NE, AlAwadh MA, Alhakamy NA, Abdel-Samii ZK, Panda SS, Abuo-Rahma GEA, Mohamed MFA. Design, synthesis and anticancer activity of novel valproic acid conjugates with improved histone deacetylase (HDAC) inhibitory activity. Bioorg Chem 2020;99:103797. [PMID: 32247939 DOI: 10.1016/j.bioorg.2020.103797] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
30 Liu Z, Wang M, Wang H, Fang L, Gou S. Targeting RAS-RAF pathway significantly improves antitumor activity of Rigosertib-derived platinum(IV) complexes and overcomes cisplatin resistance. Eur J Med Chem 2020;194:112269. [PMID: 32248002 DOI: 10.1016/j.ejmech.2020.112269] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
31 Yu H, Song R, Kong Y, Cao T, Chen Y. Synthesis, crystal structure and spectral properties of a copper(II) complex with flavonoxylacetate ligand. Journal of Coordination Chemistry 2020;73:772-783. [DOI: 10.1080/00958972.2020.1755035] [Reference Citation Analysis]
32 Meng T, Qin QP, Chen ZL, Zou HH, Wang K, Liang FP. Cyclometalated Ir(III)-8-oxychinolin complexes acting as red-colored probes for specific mitochondrial imaging and anticancer drugs. Eur J Med Chem 2020;192:112192. [PMID: 32146374 DOI: 10.1016/j.ejmech.2020.112192] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
33 Gao L, Ge C, Wang S, Xu X, Feng Y, Li X, Wang C, Wang Y, Dai F, Xie S. The Role of p53-Mediated Signaling in the Therapeutic Response of Colorectal Cancer to 9F, a Spermine-Modified Naphthalene Diimide Derivative. Cancers (Basel) 2020;12:E528. [PMID: 32106543 DOI: 10.3390/cancers12030528] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
34 Singh I, Luxami V, Paul K. Synthesis of naphthalimide-phenanthro[9,10-d]imidazole derivatives: In vitro evaluation, binding interaction with DNA and topoisomerase inhibition. Bioorg Chem 2020;96:103631. [PMID: 32036164 DOI: 10.1016/j.bioorg.2020.103631] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
35 Galiana-Roselló C, Aceves-Luquero C, González J, Martínez-Camarena Á, Villalonga R, Fernández de Mattos S, Soriano C, Llinares J, García-España E, Villalonga P, González-Rosende ME. Toward a Rational Design of Polyamine-Based Zinc-Chelating Agents for Cancer Therapies. J Med Chem 2020;63:1199-215. [PMID: 31935092 DOI: 10.1021/acs.jmedchem.9b01554] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
36 Singh I, Luxami V, Paul K. Synthesis and in vitro evaluation of naphthalimide-benzimidazole conjugates as potential antitumor agents. Org Biomol Chem 2019;17:5349-66. [PMID: 31099353 DOI: 10.1039/c8ob02973c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
37 Liu H, Ma J, Li Y, Yue K, Li L, Xi Z, Zhang X, Liu J, Feng K, Ma Q, Liu S, Guo S, Wang PG, Wang C, Xie S. Polyamine-Based Pt(IV) Prodrugs as Substrates for Polyamine Transporters Preferentially Accumulate in Cancer Metastases as DNA and Polyamine Metabolism Dual-Targeted Antimetastatic Agents. J Med Chem 2019;62:11324-34. [PMID: 31765154 DOI: 10.1021/acs.jmedchem.9b01641] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
38 Liu Z, Wang M, Wang H, Fang L, Gou S. Platinum-Based Modification of Styrylbenzylsulfones as Multifunctional Antitumor Agents: Targeting the RAS/RAF Pathway, Enhancing Antitumor Activity, and Overcoming Multidrug Resistance. J Med Chem 2020;63:186-204. [DOI: 10.1021/acs.jmedchem.9b01223] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
39 Johnson KR, de Bettencourt-dias A. 1 O 2 Generating Luminescent Lanthanide Complexes with 1,8-Naphthalimide-Based Sensitizers. Inorg Chem 2019;58:13471-80. [DOI: 10.1021/acs.inorgchem.9b02431] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
40 Zhang Y, Hou Q, Li X, Zhu J, Wang W, Li B, Zhao L, Xia H. Enrichment of novel quinazoline derivatives with high antitumor activity in mitochondria tracked by its self-fluorescence. European Journal of Medicinal Chemistry 2019;178:417-32. [DOI: 10.1016/j.ejmech.2019.06.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
41 Meng T, Qin QP, Chen ZL, Zou HH, Wang K, Liang FP. High in vitro and in vivo antitumor activities of Ln(III) complexes with mixed 5,7-dichloro-2-methyl-8-quinolinol and 4,4'-dimethyl-2,2'-bipyridyl chelating ligands. Eur J Med Chem 2019;169:103-10. [PMID: 30870791 DOI: 10.1016/j.ejmech.2019.02.066] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
42 Gu S, Yu P, Hu J, Liu Y, Li Z, Qian Y, Wang Y, Gou Y, Yang F. Mitochondria-localizing N-heterocyclic thiosemicarbazone copper complexes with good cytotoxicity and high antimetastatic activity. European Journal of Medicinal Chemistry 2019;164:654-64. [DOI: 10.1016/j.ejmech.2019.01.014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 8.5] [Reference Citation Analysis]
43 Huang G, Chen S, Qin Q, Luo J, Tan M, Wang Z, Zou B, Liang H. In vitro and in vivo activity of novel platinum( ii ) complexes with naphthalene imide derivatives inhibiting human non-small cell lung cancer cells. New J Chem 2019;43:8146-52. [DOI: 10.1039/c9nj01076a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
44 Li J, Tian R, Ge C, Chen Y, liu X, Wang Y, Yang Y, Luo W, Dai F, Wang S, Chen S, Xie S, Wang C. Discovery of the Polyamine Conjugate with Benzo[ cd ]indol-2(1 H )-one as a Lysosome-Targeted Antimetastatic Agent. J Med Chem 2018;61:6814-29. [DOI: 10.1021/acs.jmedchem.8b00694] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
45 Xu X, Wang S, Chang Y, Ge C, Li X, Feng Y, Xie S, Wang C, Dai F, Luo W. Synthesis and biological evaluation of novel asymmetric naphthalene diimide derivatives as anticancer agents depending on ROS generation. Medchemcomm 2018;9:1377-85. [PMID: 30151093 DOI: 10.1039/c8md00265g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
46 Vanhoutte R, Kahler JP, Martin S, van Veen S, Verhelst SHL. Clickable Polyamine Derivatives as Chemical Probes for the Polyamine Transport System. ChemBioChem 2018;19:907-11. [DOI: 10.1002/cbic.201800043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
47 Joshi R, Mukherjee DD, Chakrabarty S, Martin A, Jadhao M, Chakrabarti G, Sarkar A, Ghosh SK. Unveiling the Potential of Unfused Bichromophoric Naphthalimide To Induce Cytotoxicity by Binding to Tubulin: Breaks Monotony of Naphthalimides as Conventional Intercalators. J Phys Chem B 2018;122:3680-95. [PMID: 29561610 DOI: 10.1021/acs.jpcb.7b10429] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
48 Dai F, He H, Xu X, Chen S, Wang C, Feng C, Tian Z, Dong H, Xie S. Synthesis and biological evaluation of naphthalimide-polyamine conjugates modified by alkylation as anticancer agents through p53 pathway. Bioorganic Chemistry 2018;77:16-24. [DOI: 10.1016/j.bioorg.2017.12.036] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
49 Ji L, Yang S, Li S, Liu S, Tang S, Liu Z, Meng X, Yu S. A novel triazolonaphthalimide induces apoptosis and inhibits tumor growth by targeting DNA and DNA-associated processes. Oncotarget 2017;8:37394-408. [PMID: 28445124 DOI: 10.18632/oncotarget.16962] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
50 Li Q, Zhu ZX, Zhang X, Luo W, Chang LP, Chen S, Wang YX, Xie SQ, Chang CC, Wang CJ. The lead optimization of the polyamine conjugate of flavonoid with a naphthalene motif: Synthesis and biological evaluation. Eur J Med Chem 2018;146:564-76. [PMID: 29407981 DOI: 10.1016/j.ejmech.2018.01.074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
51 Reddy TS, Privér SH, Mirzadeh N, Bhargava SK. Synthesis of gold(I) phosphine complexes containing the 2-BrC 6 F 4 PPh 2 ligand: Evaluation of anticancer activity in 2D and 3D spheroidal models of HeLa cancer cells. European Journal of Medicinal Chemistry 2018;145:291-301. [DOI: 10.1016/j.ejmech.2017.12.048] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
52 Li M, Wang Y, Ge C, Chang L, Wang C, Tian Z, Wang S, Dai F, Zhao L, Xie S. Synthesis and biological evaluation of novel alkylated polyamine analogues as potential anticancer agents. European Journal of Medicinal Chemistry 2018;143:1732-43. [DOI: 10.1016/j.ejmech.2017.10.069] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
53 Cai S, Kong Y, Xiao D, Chen Y, Wang Q. Primary aminomethyl derivatives of kaempferol: hydrogen bond-assisted synthesis, anticancer activity and spectral properties. Org Biomol Chem 2018;16:1921-31. [DOI: 10.1039/c7ob02927f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
54 Zhu J, Xu B, Yu J, Ren Y, Wang J, Xie P, Pittman CU, Zhou A. Copper-catalyzed generation of flavone selenide and thioether derivatives using KSeCN and KSCN via C–H functionalization. Org Biomol Chem 2018;16:5999-6005. [DOI: 10.1039/c8ob01398e] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
55 Chen YY, Gopala L, Bheemanaboina RRY, Liu HB, Cheng Y, Geng RX, Zhou CH. Novel Naphthalimide Aminothiazoles as Potential Multitargeting Antimicrobial Agents. ACS Med Chem Lett 2017;8:1331-5. [PMID: 29259757 DOI: 10.1021/acsmedchemlett.7b00452] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 7.7] [Reference Citation Analysis]
56 Bjørklund G, Dadar M, Chirumbolo S, Lysiuk R. Flavonoids as detoxifying and pro-survival agents: What's new? Food Chem Toxicol 2017;110:240-50. [PMID: 29079495 DOI: 10.1016/j.fct.2017.10.039] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
57 Rioux B, Pouget C, Fidanzi-dugas C, Gamond A, Laurent A, Semaan J, Pinon A, Champavier Y, Léger DY, Liagre B, Duroux J, Fagnère C, Sol V. Design and multi-step synthesis of chalcone-polyamine conjugates as potent antiproliferative agents. Bioorganic & Medicinal Chemistry Letters 2017;27:4354-7. [DOI: 10.1016/j.bmcl.2017.08.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
58 Vong KKH, Tsubokura K, Nakao Y, Tanei T, Noguchi S, Kitazume S, Taniguchi N, Tanaka K. Cancer cell targeting driven by selective polyamine reactivity with glycine propargyl esters. Chem Commun 2017;53:8403-6. [DOI: 10.1039/c7cc01934c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]