BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives. J Med Chem 2017;60:4780-804. [DOI: 10.1021/acs.jmedchem.6b01595] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 10.8] [Reference Citation Analysis]
Number Citing Articles
1 Koumpoura CL, Robert A, Athanassopoulos CM, Baltas M. Antimalarial Inhibitors Targeting Epigenetics or Mitochondria in Plasmodium falciparum: Recent Survey upon Synthesis and Biological Evaluation of Potential Drugs against Malaria. Molecules 2021;26:5711. [PMID: 34577183 DOI: 10.3390/molecules26185711] [Reference Citation Analysis]
2 Saccoccia F, Brindisi M, Gimmelli R, Relitti N, Guidi A, Saraswati AP, Cavella C, Brogi S, Chemi G, Butini S, Papoff G, Senger J, Herp D, Jung M, Campiani G, Gemma S, Ruberti G. Screening and Phenotypical Characterization of Schistosoma mansoni Histone Deacetylase 8 ( Sm HDAC8) Inhibitors as Multistage Antischistosomal Agents. ACS Infect Dis 2020;6:100-13. [DOI: 10.1021/acsinfecdis.9b00224] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
3 Mäder P, Rennar GA, Ventura AMP, Grevelding CG, Schlitzer M. Chemotherapy for Fighting Schistosomiasis: Past, Present and Future. ChemMedChem 2018;13:2374-89. [DOI: 10.1002/cmdc.201800572] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
4 Marek M, Ramos-Morales E, Picchi-Constante GFA, Bayer T, Norström C, Herp D, Sales-Junior PA, Guerra-Slompo EP, Hausmann K, Chakrabarti A, Shaik TB, Merz A, Troesch E, Schmidtkunz K, Goldenberg S, Pierce RJ, Mourão MM, Jung M, Schultz J, Sippl W, Zanchin NIT, Romier C. Species-selective targeting of pathogens revealed by the atypical structure and active site of Trypanosoma cruzi histone deacetylase DAC2. Cell Rep 2021;37:110129. [PMID: 34936867 DOI: 10.1016/j.celrep.2021.110129] [Reference Citation Analysis]
5 Gemma S, Federico S, Brogi S, Brindisi M, Butini S, Campiani G. Dealing with schistosomiasis: Current drug discovery strategies. Medicinal Chemistry Approaches to Malaria and Other Tropical Diseases. Elsevier; 2019. pp. 107-38. [DOI: 10.1016/bs.armc.2019.06.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
6 Vaca HR, Celentano AM, Toscanini MA, Heimburg T, Ghazy E, Zeyen P, Hauser AT, Oliveira G, Elissondo MC, Jung M, Sippl W, Camicia F, Rosenzvit MC. The potential for histone deacetylase (HDAC) inhibitors as cestocidal drugs. PLoS Negl Trop Dis 2021;15:e0009226. [PMID: 33657105 DOI: 10.1371/journal.pntd.0009226] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Joo SY, Aung JM, Shin M, Moon EK, Kong HH, Goo YK, Chung DI, Hong Y. The role of the Acanthamoeba castellanii Sir2-like protein in the growth and encystation of Acanthamoeba. Parasit Vectors 2020;13:368. [PMID: 32698828 DOI: 10.1186/s13071-020-04237-5] [Reference Citation Analysis]
8 Rosenberg A, Sibley LD. Epigenetic Modifiers Alter Host Cell Transcription to Promote Toxoplasma Infection. ACS Infect Dis 2022. [PMID: 35201740 DOI: 10.1021/acsinfecdis.2c00054] [Reference Citation Analysis]
9 Huang Z, Li R, Tang T, Ling D, Wang M, Xu D, Sun M, Zheng L, Zhu F, Min H, Boonhok R, Ding Y, Wen Y, Chen Y, Li X, Chen Y, Liu T, Han J, Miao J, Fang Q, Cao Y, Tang Y, Cui J, Xu W, Cui L, Zhu J, Wong G, Li J, Jiang L. A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1. Cell Discov 2020;6:93. [PMID: 33311461 DOI: 10.1038/s41421-020-00215-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Mackwitz MKW, Hesping E, Antonova-Koch Y, Diedrich D, Woldearegai TG, Skinner-Adams T, Clarke M, Schöler A, Limbach L, Kurz T, Winzeler EA, Held J, Andrews KT, Hansen FK. Structure-Activity and Structure-Toxicity Relationships of Peptoid-Based Histone Deacetylase Inhibitors with Dual-Stage Antiplasmodial Activity. ChemMedChem 2019;14:912-26. [PMID: 30664827 DOI: 10.1002/cmdc.201800808] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
11 Maran SR, Fleck K, Monteiro-Teles NM, Isebe T, Walrad P, Jeffers V, Cestari I, Vasconcelos EJR, Moretti N. Protein acetylation in the critical biological processes in protozoan parasites. Trends Parasitol 2021;37:815-30. [PMID: 33994102 DOI: 10.1016/j.pt.2021.04.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Corpas-lópez V, Tabraue-chávez M, Sixto-lópez Y, Panadero-fajardo S, Alves de Lima Franco F, Domínguez-seglar JF, Morillas-márquez F, Franco-montalbán F, Díaz-gavilán M, Correa-basurto J, López-viota J, López-viota M, Pérez del Palacio J, de la Cruz M, de Pedro N, Martín-sánchez J, Gómez-vidal JA. O -Alkyl Hydroxamates Display Potent and Selective Antileishmanial Activity. J Med Chem 2020;63:5734-51. [DOI: 10.1021/acs.jmedchem.9b02016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
13 Ghazy E, Abdelsalam M, Robaa D, Pierce RJ, Sippl W. Histone Deacetylase (HDAC) Inhibitors for the Treatment of Schistosomiasis. Pharmaceuticals 2022;15:80. [DOI: 10.3390/ph15010080] [Reference Citation Analysis]
14 Diedrich D, Stenzel K, Hesping E, Antonova-Koch Y, Gebru T, Duffy S, Fisher G, Schöler A, Meister S, Kurz T, Avery VM, Winzeler EA, Held J, Andrews KT, Hansen FK. One-pot, multi-component synthesis and structure-activity relationships of peptoid-based histone deacetylase (HDAC) inhibitors targeting malaria parasites. Eur J Med Chem 2018;158:801-13. [PMID: 30245402 DOI: 10.1016/j.ejmech.2018.09.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
15 Fioravanti R, Mautone N, Rovere A, Rotili D, Mai A. Targeting histone acetylation/deacetylation in parasites: an update (2017–2020). Current Opinion in Chemical Biology 2020;57:65-74. [DOI: 10.1016/j.cbpa.2020.05.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
16 Ganesan A, Arimondo PB, Rots MG, Jeronimo C, Berdasco M. The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenetics 2019;11:174. [PMID: 31791394 DOI: 10.1186/s13148-019-0776-0] [Cited by in Crossref: 105] [Cited by in F6Publishing: 92] [Article Influence: 35.0] [Reference Citation Analysis]
17 Ferrigno F, Biancofiore I, Malancona S, Ponzi S, Paonessa G, Graziani R, Bresciani A, Gennari N, Di Marco A, Kaiser M, Summa V, Harper S, Ontoria JM. Discovery of 2-(1H-imidazo-2-yl)piperazines as a new class of potent and non-cytotoxic inhibitors of Trypanosoma brucei growth in vitro. Bioorg Med Chem Lett 2018;28:3689-92. [PMID: 30482621 DOI: 10.1016/j.bmcl.2018.10.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
18 Chu K, Lee H, Pflieger M, Fischer F, Asfaha Y, Alves Avelar LA, Skerhut A, Kassack MU, Hansen FK, Schöler A, Kurz T, Kim M, Moon E, Quan F. Antiproliferation and Antiencystation Effect of Class II Histone Deacetylase Inhibitors on Acanthamoeba castellanii. ACS Infect Dis . [DOI: 10.1021/acsinfecdis.1c00390] [Reference Citation Analysis]
19 Hammam E, Ananda G, Sinha A, Scheidig-Benatar C, Bohec M, Preiser PR, Dedon PC, Scherf A, Vembar SS. Discovery of a new predominant cytosine DNA modification that is linked to gene expression in malaria parasites. Nucleic Acids Res 2020;48:184-99. [PMID: 31777939 DOI: 10.1093/nar/gkz1093] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
20 Simoben CV, Qaseem A, Moumbock AFA, Telukunta KK, Günther S, Sippl W, Ntie-Kang F. Pharmacoinformatic Investigation of Medicinal Plants from East Africa. Mol Inform 2020;39:e2000163. [PMID: 32964659 DOI: 10.1002/minf.202000163] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
21 Loeuillet C, Touquet B, Guichou JF, Labesse G, Sereno D. A Tiny Change Makes a Big Difference in the Anti-Parasitic Activities of an HDAC Inhibitor. Int J Mol Sci 2019;20:E2973. [PMID: 31216674 DOI: 10.3390/ijms20122973] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Lechner S, Malgapo MIP, Grätz C, Steimbach RR, Baron A, Rüther P, Nadal S, Stumpf C, Loos C, Ku X, Prokofeva P, Lautenbacher L, Heimburg T, Würf V, Meng C, Wilhelm M, Sippl W, Kleigrewe K, Pauling JK, Kramer K, Miller AK, Pfaffl MW, Linder ME, Kuster B, Médard G. Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nat Chem Biol 2022. [PMID: 35484434 DOI: 10.1038/s41589-022-01015-5] [Reference Citation Analysis]
23 Loeuillet C, Touquet B, Oury B, Eddaikra N, Pons JL, Guichou JF, Labesse G, Sereno D. Synthesis of aminophenylhydroxamate and aminobenzylhydroxamate derivatives and in vitro screening for antiparasitic and histone deacetylase inhibitory activity. Int J Parasitol Drugs Drug Resist 2018;8:59-66. [PMID: 29414107 DOI: 10.1016/j.ijpddr.2018.01.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
24 Nawaz M, Malik I, Hameed M, Hussain Kuthu Z, Zhou J. Modifications of histones in parasites as drug targets. Vet Parasitol 2020;278:109029. [PMID: 31978703 DOI: 10.1016/j.vetpar.2020.109029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Lee HA, Park SM, Chu KB, Quan FS, Kurz T, Pflieger M, Moon EK. Application of Histone Deacetylase Inhibitors MPK472 and KSK64 as a Potential Treatment Option for Acanthamoeba Keratitis. Antimicrob Agents Chemother 2020;64:e01506-20. [PMID: 32928736 DOI: 10.1128/AAC.01506-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Lu H, Wang W, Li X, Zhang M, Cheng X, Sun K, Ding Y, Li X, Hu A. A carrier-free nanoparticle with dual NIR/acid responsiveness by co-assembly of enediyne and IR820 for combined PTT/chemotherapy. J Mater Chem B 2021;9:4056-64. [PMID: 33949615 DOI: 10.1039/d1tb00279a] [Reference Citation Analysis]
27 Coetzee N, von Grüning H, Opperman D, van der Watt M, Reader J, Birkholtz LM. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci Rep 2020;10:2355. [PMID: 32047203 DOI: 10.1038/s41598-020-59298-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
28 Corpas-lópez V, Díaz-gavilán M, Franco-montalbán F, Merino-espinosa G, López-viota M, López-viota J, Belmonte-reche E, Pérez-del Palacio J, de Pedro N, Gómez-vidal JA, Morillas-márquez F, Martín-sánchez J. A nanodelivered Vorinostat derivative is a promising oral compound for the treatment of visceral leishmaniasis. Pharmacological Research 2019;139:375-83. [DOI: 10.1016/j.phrs.2018.11.039] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
29 Luo Y, Li H. Structure-Based Inhibitor Discovery of Class I Histone Deacetylases (HDACs). Int J Mol Sci 2020;21:E8828. [PMID: 33266366 DOI: 10.3390/ijms21228828] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 de Sena M. Pinheiro P, Rodrigues DA, do Couto Maia R, Thota S, Fraga CA. The Use of Conformational Restriction in Medicinal Chemistry. CTMC 2019;19:1712-33. [DOI: 10.2174/1568026619666190712205025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
31 Ângelo de Souza L, Silva E Bastos M, de Melo Agripino J, Souza Onofre T, Apaza Calla LF, Heimburg T, Ghazy E, Bayer T, Ferraz da Silva VH, Dutra Ribeiro P, Licursi de Oliveira L, Costa Bressan G, de Almeida Lamêgo MR, Silva-Júnior A, de Souza Vasconcellos R, Suarez-Fontes AM, Almeida-Silva J, Vannier-Santos MA, Pierce R, Sippl W, Lopes Rangel Fietto J. Histone deacetylases inhibitors as new potential drugs against Leishmania braziliensis, the main causative agent of new world tegumentary leishmaniasis. Biochem Pharmacol 2020;180:114191. [PMID: 32777278 DOI: 10.1016/j.bcp.2020.114191] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Zwergel C, Di Bello E, Fioravanti R, Conte M, Nebbioso A, Mazzone R, Brosch G, Mercurio C, Varasi M, Altucci L, Valente S, Mai A. Novel Pyridine-Based Hydroxamates and 2'-Aminoanilides as Histone Deacetylase Inhibitors: Biochemical Profile and Anticancer Activity. ChemMedChem 2021;16:989-99. [PMID: 33220015 DOI: 10.1002/cmdc.202000854] [Reference Citation Analysis]
33 Guidi A, Saccoccia F, Gennari N, Gimmelli R, Nizi E, Lalli C, Paonessa G, Papoff G, Bresciani A, Ruberti G. Identification of novel multi-stage histone deacetylase (HDAC) inhibitors that impair Schistosoma mansoni viability and egg production. Parasit Vectors 2018;11:668. [PMID: 30587243 DOI: 10.1186/s13071-018-3268-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
34 Nardella F, Halby L, Dobrescu I, Viluma J, Bon C, Claes A, Cadet-Daniel V, Tafit A, Roesch C, Hammam E, Erdmann D, Mairet-Khedim M, Peronet R, Mecheri S, Witkowski B, Scherf A, Arimondo PB. Procainamide-SAHA Fused Inhibitors of hHDAC6 Tackle Multidrug-Resistant Malaria Parasites. J Med Chem 2021;64:10403-17. [PMID: 34185525 DOI: 10.1021/acs.jmedchem.1c00821] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Li R, Ling D, Tang T, Huang Z, Wang M, Ding Y, Liu T, Wei H, Xu W, Mao F, Zhu J, Li X, Jiang L, Li J. Discovery of Novel Plasmodium falciparum HDAC1 Inhibitors with Dual-Stage Antimalarial Potency and Improved Safety Based on the Clinical Anticancer Drug Candidate Quisinostat. J Med Chem 2021;64:2254-71. [PMID: 33541085 DOI: 10.1021/acs.jmedchem.0c02104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Hesping E, Skinner-Adams TS, Fisher GM, Kurz T, Andrews KT. An ELISA method to assess HDAC inhibitor-induced alterations to P. falciparum histone lysine acetylation. Int J Parasitol Drugs Drug Resist 2020;14:249-56. [PMID: 33279862 DOI: 10.1016/j.ijpddr.2020.10.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Ren Q, Gao W. Current status in the discovery of dual BET/HDAC inhibitors. Bioorg Med Chem Lett 2021;38:127829. [PMID: 33685790 DOI: 10.1016/j.bmcl.2021.127829] [Reference Citation Analysis]
38 Moreno-Yruela C, Bæk M, Vrsanova AE, Schulte C, Maric HM, Olsen CA. Hydroxamic acid-modified peptide microarrays for profiling isozyme-selective interactions and inhibition of histone deacetylases. Nat Commun 2021;12:62. [PMID: 33397936 DOI: 10.1038/s41467-020-20250-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Zhao C, Dong H, Xu Q, Zhang Y. Histone deacetylase (HDAC) inhibitors in cancer: a patent review (2017-present). Expert Opin Ther Pat 2020;30:263-74. [PMID: 32008402 DOI: 10.1080/13543776.2020.1725470] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 11.5] [Reference Citation Analysis]
40 Gomes RA, Fornari E, Silva Rocha AC, Tripodi GL, Silva Emery FD, Goulart Trossini GH. Parasitic sirtuin 2 as an opportunity in drug discovery. Future Med Chem 2021;13:1397-409. [PMID: 34189957 DOI: 10.4155/fmc-2021-0091] [Reference Citation Analysis]
41 Ghazy E, Heimburg T, Lancelot J, Zeyen P, Schmidtkunz K, Truhn A, Darwish S, Simoben CV, Shaik TB, Erdmann F, Schmidt M, Robaa D, Romier C, Jung M, Pierce R, Sippl W. Synthesis, structure-activity relationships, cocrystallization and cellular characterization of novel smHDAC8 inhibitors for the treatment of schistosomiasis. Eur J Med Chem 2021;225:113745. [PMID: 34392190 DOI: 10.1016/j.ejmech.2021.113745] [Reference Citation Analysis]
42 Simoben CV, Ghazy E, Zeyen P, Darwish S, Schmidt M, Romier C, Robaa D, Sippl W. Binding Free Energy (BFE) Calculations and Quantitative Structure-Activity Relationship (QSAR) Analysis of Schistosoma mansoni Histone Deacetylase 8 (smHDAC8) Inhibitors. Molecules 2021;26:2584. [PMID: 33925246 DOI: 10.3390/molecules26092584] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Simoben CV, Robaa D, Chakrabarti A, Schmidtkunz K, Marek M, Lancelot J, Kannan S, Melesina J, Shaik TB, Pierce RJ, Romier C, Jung M, Sippl W. A Novel Class of Schistosoma mansoni Histone Deacetylase 8 (HDAC8) Inhibitors Identified by Structure-Based Virtual Screening and In Vitro Testing. Molecules 2018;23:E566. [PMID: 29498707 DOI: 10.3390/molecules23030566] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
44 Ren Q, Gao W. Current status in the discovery of dual BET/HDAC inhibitors. Bioorg Med Chem Lett 2021;31:127671. [PMID: 33229136 DOI: 10.1016/j.bmcl.2020.127671] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Mackwitz MKW, Hesping E, Eribez K, Schöler A, Antonova-Koch Y, Held J, Winzeler EA, Andrews KT, Hansen FK. Investigation of the in vitro and in vivo efficacy of peptoid-based HDAC inhibitors with dual-stage antiplasmodial activity. Eur J Med Chem 2021;211:113065. [PMID: 33360801 DOI: 10.1016/j.ejmech.2020.113065] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Stenzel K, Chua MJ, Duffy S, Antonova-Koch Y, Meister S, Hamacher A, Kassack MU, Winzeler E, Avery VM, Kurz T, Andrews KT, Hansen FK. Design and Synthesis of Terephthalic Acid-Based Histone Deacetylase Inhibitors with Dual-Stage Anti-Plasmodium Activity. ChemMedChem 2017;12:1627-36. [PMID: 28812327 DOI: 10.1002/cmdc.201700360] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
47 Zuma AA, de Souza W. Histone deacetylases as targets for antitrypanosomal drugs. Future Sci OA 2018;4:FSO325. [PMID: 30271613 DOI: 10.4155/fsoa-2018-0037] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
48 Yang L, Wang H, Zhong L, Yuan C, Liu S, Yu Z, Liu S, Yan Y, Wu C, Wang Y, Wang Z, Yu Y, Chen Q, Li G. X-ray crystal structure guided discovery of new selective, substrate-mimicking sirtuin 2 inhibitors that exhibit activities against non-small cell lung cancer cells. European Journal of Medicinal Chemistry 2018;155:806-23. [DOI: 10.1016/j.ejmech.2018.06.041] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
49 Keogan DM, Oliveira SSC, Sangenito LS, Branquinha MH, Jagoo RD, Twamley B, Santos ALS, Griffith DM. Novel antimony( iii ) hydroxamic acid complexes as potential anti-leishmanial agents. Dalton Trans 2018;47:7245-55. [DOI: 10.1039/c8dt00546j] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
50 Yu Z, Chen S, Aleem M, He S, Yang Y, Zhou T, Liu J, Luo J, Yan R, Xu L, Song X, Li X. Histone deacetylase SIR2 in Toxoplasma gondii modulates functions of murine macrophages in vitro and protects mice against acute toxoplasmosis in vivo. Microb Pathog 2021;154:104835. [PMID: 33731306 DOI: 10.1016/j.micpath.2021.104835] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Monaldi D, Rotili D, Lancelot J, Marek M, Wössner N, Lucidi A, Tomaselli D, Ramos-morales E, Romier C, Pierce RJ, Mai A, Jung M. Structure–Reactivity Relationships on Substrates and Inhibitors of the Lysine Deacylase Sirtuin 2 from Schistosoma mansoni ( Sm Sirt2). J Med Chem 2019;62:8733-59. [DOI: 10.1021/acs.jmedchem.9b00638] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
52 Melesina J, Simoben CV, Praetorius L, Bülbül EF, Robaa D, Sippl W. Strategies To Design Selective Histone Deacetylase Inhibitors. ChemMedChem 2021;16:1336-59. [PMID: 33428327 DOI: 10.1002/cmdc.202000934] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
53 Wang M, Tang T, Li R, Huang Z, Ling D, Zheng L, Ding Y, Liu T, Xu W, Zhu F, Min H, Boonhok R, Mao F, Zhu J, Li X, Jiang L, Li J. Drug Repurposing of Quisinostat to Discover Novel Plasmodium falciparum HDAC1 Inhibitors with Enhanced Triple-Stage Antimalarial Activity and Improved Safety. J Med Chem 2022. [PMID: 35175762 DOI: 10.1021/acs.jmedchem.1c01993] [Reference Citation Analysis]
54 Bouchut A, Rotili D, Pierrot C, Valente S, Lafitte S, Schultz J, Hoglund U, Mazzone R, Lucidi A, Fabrizi G, Pechalrieu D, Arimondo PB, Skinner-adams TS, Chua MJ, Andrews KT, Mai A, Khalife J. Identification of novel quinazoline derivatives as potent antiplasmodial agents. European Journal of Medicinal Chemistry 2019;161:277-91. [DOI: 10.1016/j.ejmech.2018.10.041] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]