BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Teleszko M, Wojdyło A, Rudzińska M, Oszmiański J, Golis T. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn ( Hippophaë rhamnoides L.) Berries. J Agric Food Chem 2015;63:4120-9. [DOI: 10.1021/acs.jafc.5b00564] [Cited by in Crossref: 76] [Cited by in F6Publishing: 56] [Article Influence: 10.9] [Reference Citation Analysis]
Number Citing Articles
1 Olas B. Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food and Chemical Toxicology 2016;97:199-204. [DOI: 10.1016/j.fct.2016.09.008] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 9.0] [Reference Citation Analysis]
2 Bieniek A, Lachowicz-wiśniewska S, Bojarska J. The Bioactive Profile, Nutritional Value, Health Benefits and Agronomic Requirements of Cherry Silverberry (Elaeagnus multiflora Thunb.): A Review. Molecules 2022;27:2719. [DOI: 10.3390/molecules27092719] [Reference Citation Analysis]
3 Zheng L, Shi L, Zhao C, Jin Q, Wang X. Fatty acid, phytochemical, oxidative stability and in vitro antioxidant property of sea buckthorn (Hippophaë rhamnoides L.) oils extracted by supercritical and subcritical technologies. LWT 2017;86:507-13. [DOI: 10.1016/j.lwt.2017.08.042] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 6.4] [Reference Citation Analysis]
4 Chaudhary P, Sharma PC. Distribution of simple sequence repeats, transcription factors, and differentially expressed genes in the NGS-based transcriptome of male and female seabuckthorn (Hippophae salicifolia). J Biomol Struct Dyn 2022;:1-14. [PMID: 35120412 DOI: 10.1080/07391102.2022.2034669] [Reference Citation Analysis]
5 Ghendov-Moşanu A, Sturza R, Opriş O, Lung I, Popescu L, Popovici V, Soran ML, Patraş A. Effect of lipophilic sea buckthorn extract on cream cheese properties. J Food Sci Technol 2020;57:628-37. [PMID: 32116372 DOI: 10.1007/s13197-019-04094-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Neagu C, Mihalcea L, Enachi E, Barbu V, Borda D, Bahrim GE, Stănciuc N. Cross-Linked Microencapsulation of CO2 Supercritical Extracted Oleoresins from Sea Buckthorn: Evidence of Targeted Functionality and Stability. Molecules 2020;25:E2442. [PMID: 32456245 DOI: 10.3390/molecules25102442] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
7 Schubertová S, Burčová Z, Greifová M, Potočňáková M, Janotková L, Kreps F. Influence of sea buckthorn juice addition on the growth of microbial food cultures. Acta Chimica Slovaca 2021;14:25-31. [DOI: 10.2478/acs-2021-0004] [Reference Citation Analysis]
8 Tkacz K, Wojdyło A, Turkiewicz IP, Bobak Ł, Nowicka P. Anti-Oxidant and Anti-Enzymatic Activities of Sea Buckthorn (Hippophaë rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants (Basel) 2019;8:E618. [PMID: 31817215 DOI: 10.3390/antiox8120618] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
9 Żuchowski J, Pecio Ł, Marciniak B, Kontek R, Stochmal A. Unusual isovalerylated flavonoids from the fruit of sea buckthorn (Elaeagnus rhamnoides) grown in Sokółka, Poland. Phytochemistry 2019;163:178-86. [PMID: 30952449 DOI: 10.1016/j.phytochem.2019.03.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
10 Ding J, Ruan C, Du W, Guan Y. RNA-seq data reveals a coordinated regulation mechanism of multigenes involved in the high accumulation of palmitoleic acid and oil in sea buckthorn berry pulp. BMC Plant Biol 2019;19:207. [PMID: 31109294 DOI: 10.1186/s12870-019-1815-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
11 Criste A, Urcan AC, Bunea A, Pripon Furtuna FR, Olah NK, Madden RH, Corcionivoschi N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties. Molecules 2020;25:E1170. [PMID: 32150954 DOI: 10.3390/molecules25051170] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
12 Singh S, Sharma PC. Gas chromatography-mass spectrometry (GC-MS) profiling reveals substantial metabolome diversity in seabuckthorn (Hippophae rhamnoides L.) berries originating from different geographical regions in the Indian Himalayas. Phytochem Anal 2021. [PMID: 34278612 DOI: 10.1002/pca.3081] [Reference Citation Analysis]
13 Ciesarová Z, Murkovic M, Cejpek K, Kreps F, Tobolková B, Koplík R, Belajová E, Kukurová K, Daško Ľ, Panovská Z, Revenco D, Burčová Z. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res Int 2020;133:109170. [PMID: 32466930 DOI: 10.1016/j.foodres.2020.109170] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
14 Zapałowska A, Matłok N, Zardzewiały M, Piechowiak T, Balawejder M. Effect of Ozone Treatment on the Quality of Sea Buckthorn (Hippophae rhamnoides L.). Plants (Basel) 2021;10:847. [PMID: 33922199 DOI: 10.3390/plants10050847] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ma X, Yang W, Kallio H, Yang B. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn (Hippophaë rhamnoides). Crit Rev Food Sci Nutr 2021;:1-19. [PMID: 33412908 DOI: 10.1080/10408398.2020.1869921] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Gęgotek A, Jastrząb A, Jarocka-Karpowicz I, Muszyńska M, Skrzydlewska E. The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Seed Oil on UV-Induced Changes in Lipid Metabolism of Human Skin Cells. Antioxidants (Basel) 2018;7:E110. [PMID: 30142919 DOI: 10.3390/antiox7090110] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
17 Sireswar S, Dey G. Matrix-wise evaluation of in vivo and in vitro efficiencies of L. rhamnosus GG-fortified beverages. Food Res Int 2019;119:908-19. [PMID: 30884731 DOI: 10.1016/j.foodres.2018.10.077] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
18 Guo R, Guo X, Li T, Fu X, Liu RH. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chemistry 2017;221:997-1003. [DOI: 10.1016/j.foodchem.2016.11.063] [Cited by in Crossref: 67] [Cited by in F6Publishing: 52] [Article Influence: 13.4] [Reference Citation Analysis]
19 Olas B, Kontek B, Malinowska P, Żuchowski J, Stochmal A. Hippophae rhamnoides L. Fruits Reduce the Oxidative Stress in Human Blood Platelets and Plasma. Oxid Med Cell Longev 2016;2016:4692486. [PMID: 26933473 DOI: 10.1155/2016/4692486] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
20 Neri-numa IA, Soriano Sancho RA, Pereira APA, Pastore GM. Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Research International 2018;103:345-60. [DOI: 10.1016/j.foodres.2017.10.053] [Cited by in Crossref: 58] [Cited by in F6Publishing: 36] [Article Influence: 14.5] [Reference Citation Analysis]
21 Solà Marsiñach M, Cuenca AP. The impact of sea buckthorn oil fatty acids on human health. Lipids Health Dis 2019;18:145. [PMID: 31228942 DOI: 10.1186/s12944-019-1065-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
22 Guo X, Shi L, Yang S, Yang R, Dai X, Zhang T, Liu R, Chang M, Jin Q, Wang X. Effect of sea-buckthorn pulp and flaxseed residues on quality and shelf life of bread. Food Funct 2019;10:4220-30. [DOI: 10.1039/c8fo02511h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
23 Yang W, Laaksonen O, Kallio H, Yang B. Proanthocyanidins in Sea Buckthorn ( Hippophaë rhamnoides L.) Berries of Different Origins with Special Reference to the Influence of Genetic Background and Growth Location. J Agric Food Chem 2016;64:1274-82. [DOI: 10.1021/acs.jafc.5b05718] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
24 Tereshchuk L, Starovoytova K, Babich O, Dyshlyuk L, Sergeeva I, Pavsky V, Ivanova S, Prosekov A. Sea Buckthorn and Rosehip Oils with Chokeberry Extract to Prevent Hypercholesterolemia in Mice Caused by a High-Fat Diet In Vivo. Nutrients 2020;12:E2941. [PMID: 32992796 DOI: 10.3390/nu12102941] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Lou-bonafonte JM, Martínez-beamonte R, Sanclemente T, Surra JC, Herrera-marcos LV, Sanchez-marco J, Arnal C, Osada J. Current Insights into the Biological Action of Squalene. Mol Nutr Food Res 2018;62:1800136. [DOI: 10.1002/mnfr.201800136] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 7.8] [Reference Citation Analysis]
26 Li H, Ruan C, Ding J, Li J, Wang L, Tian X. Diversity in sea buckthorn (Hippophae rhamnoides L.) accessions with different origins based on morphological characteristics, oil traits, and microsatellite markers. PLoS One 2020;15:e0230356. [PMID: 32168329 DOI: 10.1371/journal.pone.0230356] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Li Y, Li P, Yang K, He Q, Wang Y, Sun Y, He C, Xiao P. Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules 2021;26:7189. [PMID: 34885771 DOI: 10.3390/molecules26237189] [Reference Citation Analysis]
28 Olas B, Żuchowski J, Lis B, Skalski B, Kontek B, Grabarczyk Ł, Stochmal A. Comparative chemical composition, antioxidant and anticoagulant properties of phenolic fraction (a rich in non-acylated and acylated flavonoids and non-polar compounds) and non-polar fraction from Elaeagnus rhamnoides (L.) A. Nelson fruits. Food Chem 2018;247:39-45. [PMID: 29277226 DOI: 10.1016/j.foodchem.2017.12.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
29 Liu S, Xiao P, Kuang Y, Hao J, Huang T, Liu E. Flavonoids from sea buckthorn: A review on phytochemistry, pharmacokinetics and role in metabolic diseases. J Food Biochem 2021;45:e13724. [PMID: 33856060 DOI: 10.1111/jfbc.13724] [Reference Citation Analysis]
30 Kumar A, Kumar P, Sharma A, Sharma DP, Thakur M. Scientific insights to existing know-how, breeding, genetics, and biotechnological interventions pave the way for the adoption of high-value underutilized super fruit Sea buckthorn (Hippophae rhamnoides L.). South African Journal of Botany 2021. [DOI: 10.1016/j.sajb.2021.11.045] [Reference Citation Analysis]
31 Chen L, Liu Y, Jia D, Yang J, Zhao J, Chen C, Liu H, Liang X. Pharmacokinetics and Biodistribution of Aurantiamide and Aurantiamide Acetate in Rats after Oral Administration of Portulaca oleracea L. Extracts. J Agric Food Chem 2016;64:3445-55. [DOI: 10.1021/acs.jafc.6b00470] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
32 Dienaitė L, Pukalskas A, Pukalskienė M, Pereira CV, Matias AA, Venskutonis PR. Phytochemical Composition, Antioxidant and Antiproliferative Activities of Defatted Sea Buckthorn (Hippophaë rhamnoides L.) Berry Pomace Fractions Consecutively Recovered by Pressurized Ethanol and Water. Antioxidants (Basel) 2020;9:E274. [PMID: 32218308 DOI: 10.3390/antiox9040274] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
33 Olas B, Skalski B, Ulanowska K. The Anticancer Activity of Sea Buckthorn [Elaeagnus rhamnoides (L.) A. Nelson]. Front Pharmacol 2018;9:232. [PMID: 29593547 DOI: 10.3389/fphar.2018.00232] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
34 Ding J, Ruan C, Guan Y, Krishna P. Identification of microRNAs involved in lipid biosynthesis and seed size in developing sea buckthorn seeds using high-throughput sequencing. Sci Rep 2018;8:4022. [PMID: 29507325 DOI: 10.1038/s41598-018-22464-w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
35 Dienaitė L, Baranauskienė R, Rimantas Venskutonis P. Lipophilic extracts isolated from European cranberry bush (Viburnum opulus) and sea buckthorn (Hippophae rhamnoides) berry pomace by supercritical CO2 - Promising bioactive ingredients for foods and nutraceuticals. Food Chem 2021;348:129047. [PMID: 33515951 DOI: 10.1016/j.foodchem.2021.129047] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Olas B. The multifunctionality of berries toward blood platelets and the role of berry phenolics in cardiovascular disorders. Platelets 2017;28:540-9. [PMID: 27778523 DOI: 10.1080/09537104.2016.1235689] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
37 Wu Z, Zhang Q, Li N, Pu Y, Wang B, Zhang T. Comparison of critical methods developed for fatty acid analysis: A review: Other Techniques. J Sep Sci 2017;40:288-98. [DOI: 10.1002/jssc.201600707] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
38 Guo R, Chang X, Guo X, Brennan CS, Li T, Fu X, Liu RH. Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophaë rhamnoides L.) berries as affected by in vitro digestion. Food Funct 2017;8:4229-40. [PMID: 29046908 DOI: 10.1039/c7fo00917h] [Cited by in Crossref: 28] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
39 Zhang G, Zhang T, Liu J, Zhang J, He C. Comprehensive analysis of differentially expressed genes reveals the molecular response to elevated CO 2 levels in two sea buckthorn cultivars. Gene 2018;660:120-7. [DOI: 10.1016/j.gene.2018.03.057] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
40 Czaplicki S, Ogrodowska D, Zadernowski R, Konopka I. Effect of Sea-Buckthorn (Hippophaë rhamnoides L.) Pulp Oil Consumption on Fatty Acids and Vitamin A and E Accumulation in Adipose Tissue and Liver of Rats. Plant Foods Hum Nutr 2017;72:198-204. [PMID: 28466134 DOI: 10.1007/s11130-017-0610-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
41 Nour V, Panaite TD, Corbu AR, Ropota M, Turcu RP. Nutritional and Bioactive Compounds in Dried Sea-Buckthorn Pomace. Erwerbs-Obstbau 2021;63:91-8. [DOI: 10.1007/s10341-020-00539-1] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Ma X, Laaksonen O, Heinonen J, Sainio T, Kallio H, Yang B. Sensory profile of ethyl β-d-glucopyranoside and its contribution to quality of sea buckthorn (Hippophaë rhamnoides L.). Food Chemistry 2017;233:263-72. [DOI: 10.1016/j.foodchem.2017.04.073] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
43 Hashem NM, Shehata MG. Antioxidant and Antimicrobial Activity of Cleome droserifolia (Forssk.) Del. and Its Biological Effects on Redox Status, Immunity, and Gut Microflora. Animals (Basel) 2021;11:1929. [PMID: 34203524 DOI: 10.3390/ani11071929] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Panaite TD, Nour V, Saracila M, Turcu RP, Untea AE, Vlaicu PA. Effects of Linseed Meal and Carotenoids from Different Sources on Egg Characteristics, Yolk Fatty Acid and Carotenoid Profile and Lipid Peroxidation. Foods 2021;10:1246. [PMID: 34072662 DOI: 10.3390/foods10061246] [Reference Citation Analysis]
45 Liu Y, Xiang L, Zhang Y, Lai X, Xiong C, Li J, Su Y, Sun W, Chen S. DNA barcoding based identification of Hippophae species and authentication of commercial products by high resolution melting analysis. Food Chemistry 2018;242:62-7. [DOI: 10.1016/j.foodchem.2017.09.040] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
46 Ma X, Laaksonen O, Zheng J, Yang W, Trépanier M, Kallio H, Yang B. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Food Chem 2016;200:189-98. [PMID: 26830578 DOI: 10.1016/j.foodchem.2016.01.036] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
47 Piwowarczyk R, Ochmian I, Lachowicz S, Kapusta I, Sotek Z. Phytochemical and Bioactive Properties of Phelypaea Tournefortii – Effect of Parasitic Lifestyle and Environmental Factors. Acta Universitatis Cibiniensis. Series E: Food Technology 2020;24:113-28. [DOI: 10.2478/aucft-2020-0010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
48 Olas B. Biochemistry of blood platelet activation and the beneficial role of plant oils in cardiovascular diseases. Adv Clin Chem 2020;95:219-43. [PMID: 32122524 DOI: 10.1016/bs.acc.2019.08.006] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
49 Vilas-franquesa A, Saldo J, Juan B. Potential of sea buckthorn-based ingredients for the food and feed industry – a review. Food Prod Process and Nutr 2020;2. [DOI: 10.1186/s43014-020-00032-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
50 Kumari A, Kumar D. Evaluation of antioxidant and cytotoxic activity of herbal teas from Western Himalayan region: a comparison with green tea (Camellia sinensis) and black tea. Chem Biol Technol Agric 2022;9. [DOI: 10.1186/s40538-022-00294-3] [Reference Citation Analysis]
51 Wang K, Xu Z, Liao X. Bioactive compounds, health benefits and functional food products of sea buckthorn: a review. Crit Rev Food Sci Nutr 2021;:1-22. [PMID: 33783272 DOI: 10.1080/10408398.2021.1905605] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Zokaityte E, Lele V, Starkute V, Zavistanaviciute P, Cernauskas D, Klupsaite D, Ruzauskas M, Alisauskaite J, Baltrusaitytė A, Dapsas M, Siriakovaite K, Trunce S, Guiné RPF, Viskelis P, Steibliene V, Bartkiene E. Antimicrobial, Antioxidant, Sensory Properties, and Emotions Induced for the Consumers of Nutraceutical Beverages Developed from Technological Functionalised Food Industry By-Products. Foods 2020;9:E1620. [PMID: 33172204 DOI: 10.3390/foods9111620] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Marsol-vall A, Balcells M, Eras J, Canela-garayoa R. Dispersive liquid–liquid microextraction and injection-port derivatization for the determination of free lipophilic compounds in fruit juices by gas chromatography-mass spectrometry. Journal of Chromatography A 2017;1495:12-21. [DOI: 10.1016/j.chroma.2017.03.027] [Cited by in Crossref: 11] [Article Influence: 2.2] [Reference Citation Analysis]
54 Dong K, Binosha Fernando WM, Durham R, Stockmann R, Jayasena V. Nutritional Value, Health-promoting Benefits and Food Application of Sea Buckthorn. Food Reviews International. [DOI: 10.1080/87559129.2021.1943429] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Tkacz K, Wojdyło A, Turkiewicz IP, Ferreres F, Moreno DA, Nowicka P. UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Food Chemistry 2020;309:125766. [DOI: 10.1016/j.foodchem.2019.125766] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
56 Mofasser Hossain A, Brennan MA, Guo X, Zeng X, Brennan CS. Cellular biological activity and regulation of gene expression of antioxidant dietary fibre fraction isolated from blackcurrant incorporated in the wholemeal cereals cookies. Food Chemistry 2020;312:125829. [DOI: 10.1016/j.foodchem.2019.125829] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
57 Wu Z, Li L, Li N, Zhang T, Pu Y, Zhang X, Zhang Y, Wang B. Optimization of Ultrasonic-assisted Extraction of Fatty Acids in Seeds of Brucea Javanica (L.) Merr. from Different Sources and Simultaneous Analysis Using High-Performance Liquid Chromatography with Charged Aerosol Detection. Molecules 2017;22:E931. [PMID: 28587214 DOI: 10.3390/molecules22060931] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
58 Tkacz K, Wojdyło A, Turkiewicz IP, Nowicka P. Triterpenoids, phenolic compounds, macro- and microelements in anatomical parts of sea buckthorn (Hippophaë rhamnoides L.) berries, branches and leaves. Journal of Food Composition and Analysis 2021;103:104107. [DOI: 10.1016/j.jfca.2021.104107] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
59 Aaby K, Martinsen BK, Borge GIA, Røen D. Bioactive compounds and color of sea buckthorn ( Hippophae rhamnoides L.) purees as affected by heat treatment and high-pressure homogenization. International Journal of Food Properties 2020;23:651-64. [DOI: 10.1080/10942912.2020.1752715] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
60 Liu Y, Zhang Y, Zhang J, Fan G, Tu Y, Sun S, Shen X, Li Q, Zhang Y. Rapid discrimination of sea buckthorn berries from different H. rhamnoides subspecies by multi-step IR spectroscopy coupled with multivariate data analysis. Infrared Physics & Technology 2018;89:154-60. [DOI: 10.1016/j.infrared.2018.01.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
61 Liu Y, Fan G, Zhang J, Zhang Y, Li J, Xiong C, Zhang Q, Li X, Lai X. Metabolic discrimination of sea buckthorn from different Hippophaë species by 1H NMR based metabolomics. Sci Rep 2017;7:1585. [PMID: 28484246 DOI: 10.1038/s41598-017-01722-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
62 Drozińska E, Kanclerz A, Kurek MA. Microencapsulation of sea buckthorn oil with β-glucan from barley as coating material. International Journal of Biological Macromolecules 2019;131:1014-20. [DOI: 10.1016/j.ijbiomac.2019.03.150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
63 Olas B. The beneficial health aspects of sea buckthorn (Elaeagnus rhamnoides (L.) A.Nelson) oil. J Ethnopharmacol 2018;213:183-90. [PMID: 29166576 DOI: 10.1016/j.jep.2017.11.022] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
64 Sheng C, Guo Y, Ma J, Hong E, Zhang B, Yang Y, Zhang X, Zhang D. Metabolomic Profiling Reveals Protective Effects and Mechanisms of Sea Buckthorn Sterol against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. Molecules 2022;27:2224. [DOI: 10.3390/molecules27072224] [Reference Citation Analysis]
65 Wang Y, Huang F, Zhao L, Zhang D, Wang O, Guo X, Lu F, Yang X, Ji B, Deng Q. Protective Effect of Total Flavones from Hippophae rhamnoides L. against Visible Light-Induced Retinal Degeneration in Pigmented Rabbits. J Agric Food Chem 2016;64:161-70. [DOI: 10.1021/acs.jafc.5b04874] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
66 Skalski B, Lis B, Pecio Ł, Kontek B, Olas B, Żuchowski J, Stochmal A. Isorhamnetin and its new derivatives isolated from sea buckthorn berries prevent H2O2/Fe - Induced oxidative stress and changes in hemostasis. Food Chem Toxicol 2019;125:614-20. [PMID: 30738133 DOI: 10.1016/j.fct.2019.02.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
67 Xu S, Tang Z, Liu H, Wang M, Sun J, Song Z, Cui C, Sun C, Liu S, Wang Z, Yu J. Microencapsulation of sea buckthorn (Hippophae rhamnoides L.) pulp oil by spray drying. Food Sci Nutr 2020;8:5785-97. [PMID: 33282231 DOI: 10.1002/fsn3.1828] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
68 Wei J, Su T, Su H, Jiang Y, Li J, Bi Y. Comparative assessment of phenolics, antioxidant and antiproliferative activities between Hippophae rhamnoides ssp. sinensis and H. tibetana leaf in Qinghai-Tibet Plateau. Food Bioscience 2022;46:101507. [DOI: 10.1016/j.fbio.2021.101507] [Reference Citation Analysis]
69 Tkacz K, Wojdyło A, Michalska-Ciechanowska A, Turkiewicz IP, Lech K, Nowicka P. Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules 2020;25:E3801. [PMID: 32825580 DOI: 10.3390/molecules25173801] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]