BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang X, Lu X, Wang J, Zhang Z, Du X, Zhang J, Wang J. Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Hydrogen Sulfide in Food Spoilage, Living Cells, and Zebrafish. J Agric Food Chem 2022. [PMID: 35194991 DOI: 10.1021/acs.jafc.2c00087] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Xie L, Wang R, Fan C, Tu Y, Liu G, Pu S. Mitochondria-targeted fluorescent probe with long wavelength emission for detecting H(2)S and its application in foodstuff, water and living cells. Food Chem 2023;410:135411. [PMID: 36623459 DOI: 10.1016/j.foodchem.2023.135411] [Reference Citation Analysis]
2 Zhang S, Zheng H, Yang L, Li Z, Yu M. NIR Mitochondrial Fluorescent Probe for Visualizing SO(2)/Polarity in Drug Induced Inflammatory Mice. Anal Chem 2023. [PMID: 36913654 DOI: 10.1021/acs.analchem.2c05737] [Reference Citation Analysis]
3 Chen M, Lin S, Chen X, Wang Y, Zhang J, Chen T. An ultra-sensitive ESIPT fluorescent probe for distinguishing cancerous cells and diagnosing APAP-induced liver injury via HClO fluctuation. Sensors and Actuators B: Chemical 2023. [DOI: 10.1016/j.snb.2023.133749] [Reference Citation Analysis]
4 Salunke ST, Shelar DS, Manjare ST. Synthesis and Photophysical Study of Tetraphenyl Substituted BODIPY Based Phenyl-Monoselenide Probe for Selective Detection of Superoxide. J Fluoresc 2023;33:437-44. [PMID: 36435906 DOI: 10.1007/s10895-022-03096-w] [Reference Citation Analysis]
5 Liu D, Hessler W, Henary M. H(2)S Sensors: Synthesis, Optical Properties, and Selected Biomedical Applications under Visible and NIR Light. Molecules 2023;28. [PMID: 36770961 DOI: 10.3390/molecules28031295] [Reference Citation Analysis]
6 Xu L, Xu W, Tian Z, Deng F, Huang Y. Sustainable natural chlorogenic acid as a functional molecular sensor toward viscosity detection in liquids. Photochem Photobiol Sci 2023. [PMID: 36694012 DOI: 10.1007/s43630-023-00365-w] [Reference Citation Analysis]
7 Li M, Gao M, Fu Q, Chen X, Xu K, Gong S, Liang Y, Wang Z, Wang S. Novel 2-Benzo[d]thiazolyl-4-quinolinylphenol Skeleton-Based Turn-on Fluorescent Probe for H(2)S Detection and its Multiple Applications in Water Environment, Foodstuffs, and Living Organisms. J Agric Food Chem 2023;71:780-8. [PMID: 36563285 DOI: 10.1021/acs.jafc.2c08385] [Reference Citation Analysis]
8 Li Z, Wang J, Peng X, Chen Y, Geng M. A highly selective fluorescent probe for detection of H2S based-on benzothiazole and its application. Inorganica Chimica Acta 2023. [DOI: 10.1016/j.ica.2023.121378] [Reference Citation Analysis]
9 Shi G, Wang Y, Yu Z, Zhang Q, Chen S, Xu L, Wang K, Hu Z. The coumarin-pyrazole dye for detection of hydrogen sulfide in cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023;285:121898. [DOI: 10.1016/j.saa.2022.121898] [Reference Citation Analysis]
10 Xie L, Fan T, Yao R, Mu Y, Wang R, Fan C, Pu S. Highly selective near-infrared fluorescent probe with large Stokes shift and sensitivity for H2S detection in water, foodstuff and imaging in living cells. Dyes and Pigments 2022;208:110828. [DOI: 10.1016/j.dyepig.2022.110828] [Reference Citation Analysis]
11 Dalapati R, Hunter M, Zang L. A Dual Fluorometric and Colorimetric Sulfide Sensor Based on Coordinating Self-Assembled Nanorods: Applicable for Monitoring Meat Spoilage. Chemosensors 2022;10:500. [DOI: 10.3390/chemosensors10120500] [Reference Citation Analysis]
12 Ma J, Lu X, Guo Y, Wang Z. Monitoring the fluctuations of cysteine activity in living cells using a near-infrared fluorescence probe. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124119] [Reference Citation Analysis]
13 Zhang C, Wang Y, Li X, Liu C, Nie S, Li Y, Liu C. A simple and efficient fluorescent probe based on 1,8-naphthalimide – Ebselen for selectively detecting H2S in living cells. Tetrahedron Letters 2022;110:154199. [DOI: 10.1016/j.tetlet.2022.154199] [Reference Citation Analysis]
14 Dong Z, Liang W, Ren H, Zhang Y, Wang H, Wang Y. Selective visualization of cyanide in food, living cells and zebrafish by a mitochondria targeted NIR-emitting fluorescent probe. Spectrochim Acta A Mol Biomol Spectrosc 2022;279:121485. [PMID: 35696972 DOI: 10.1016/j.saa.2022.121485] [Reference Citation Analysis]
15 Su H, Ji X, Zhang J, Wang N, Wang H, Liu J, Jiao J, Zhao W. Red-emitting Fluorescent Probe for Visualizing Endogenous Peroxynitrite in Live Cells and Inflamed Mouse Model. Journal of Molecular Structure 2022;1265:133443. [DOI: 10.1016/j.molstruc.2022.133443] [Reference Citation Analysis]
16 Li Z, Zhou Z, Chen D, Wang K, Ye N, Sun X, Lv Y. Mitochondrial-targeted red-fluorescent chemodosimeter for hydrogen sulfide signaling and visualizing. Sensors and Actuators B: Chemical 2022;369:132357. [DOI: 10.1016/j.snb.2022.132357] [Reference Citation Analysis]
17 Al Shboul AM, Ketabi M, Mechael SS, Nyayachavadi A, Rondeau‐gagné S, Izquierdo R. Hydrogen Sulfide Gas Detection in ppb Levels at Room Temperature with a Printed, Flexible, Disposable In 2 O 3 NPs‐Based Sensor for IoT Food Packaging Applications. Adv Materials Technologies. [DOI: 10.1002/admt.202201086] [Reference Citation Analysis]
18 Tan X, Hong T, Jiang Y, Zhao Z, Shi Z. Synthesis and application of a novel fluorescent probe for detection of hydrogen sulfide in real samples. International Journal of Environmental Analytical Chemistry. [DOI: 10.1080/03067319.2022.2118582] [Reference Citation Analysis]
19 Du Y, Li F, Sun S, Zhao B. A Simple but Effective Fluorescent Probe for the Detection of 4-Methylthiophenol. J Fluoresc 2022. [PMID: 35953561 DOI: 10.1007/s10895-022-03015-z] [Reference Citation Analysis]
20 Liu C, Jin Y, Ji X, Zhao W, Dong X. Access to Pyridinyl or Pyridinium Aza‐BODIPYs with Tunable Near‐Infrared Fluorescence through ICT from 4‐Pyridinyl Pyrroles**. Chemistry A European J 2022. [DOI: 10.1002/chem.202201503] [Reference Citation Analysis]
21 Cui Y, Hu G, Wu T, Yang J, Nie Y, Zhou Y. Construction of an in vivo NIR fluorescent probe for revealing the correlation between inflammation and mitochondrial hydrogen sulfide and viscosity. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.106107] [Reference Citation Analysis]
22 Chen M, Chen X, Wang Y, Fan X, Chen T, Liang Z. An ESIPT fluorescent probe for ultrarapid HClO detection during reagent-stimulated oxidative stress in cells and Zebrafish. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132545] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Qin S, Lu H, Zhang J, Ji X, Wang N, Liu J, Zhao W, Wang J. An activatable reporter for fluorescence imaging drug-induced liver injury in diverse cell lines and in vivo. Dyes and Pigments 2022;203:110345. [DOI: 10.1016/j.dyepig.2022.110345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Su H, Wang N, Zhang J, Lu X, Qin S, Wang J, Zhao W, Wang J. An activatable fluorescent probe for monitoring the up-regulation of peroxynitrite in drug-induced hepatotoxicity model. Dyes and Pigments 2022;203:110341. [DOI: 10.1016/j.dyepig.2022.110341] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Hu Y, Chen Z, Ma L, Zhang Z, Zhang H, Yi F, Liu C. A quinolinium-phenol vinylic conjugated fluorescent probe for H2S detection based on H2S-triggered release of protected group. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132837] [Reference Citation Analysis]
26 Xu L, Xiong F, Kang M, Huang Y, Wu K. Triphenylamine indanedione as an AIE-based molecular sensor with one-step facile synthesis toward viscosity detection of liquids. Analyst 2022;147:4132-4140. [DOI: 10.1039/d2an00850e] [Reference Citation Analysis]
27 Lu X, Wang N, Tao Y, Wang J, Ji X, Liu J, Zhao W, Zhang J. Optimizing phenyl selenide-based BODIPYs as fluorescent probes for diagnosing cancer and drug-induced liver injury via cysteine. Chem Commun 2022. [DOI: 10.1039/d2cc05038b] [Reference Citation Analysis]