BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gupta A, Caravan P, Price WS, Platas-Iglesias C, Gale EM. Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorg Chem 2020;59:6648-78. [PMID: 32367714 DOI: 10.1021/acs.inorgchem.0c00510] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Xie D, Yu M, Xie Z, Kadakia RT, Chung C, Ohman LE, Javanmardi K, Que EL. Versatile Nickel(II) Scaffolds as Coordination‐Induced Spin‐State Switches for 19 F Magnetic Resonance‐Based Detection. Angew Chem 2020;132:22712-9. [DOI: 10.1002/ange.202010587] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Uzal-Varela R, Lalli D, Brandariz I, Rodríguez-Rodríguez A, Platas-Iglesias C, Botta M, Esteban-Gómez D. Rigid versions of PDTA4- incorporating a 1,3-diaminocyclobutyl spacer for Mn2+ complexation: stability, water exchange dynamics and relaxivity. Dalton Trans 2021;50:16290-303. [PMID: 34730583 DOI: 10.1039/d1dt02498a] [Reference Citation Analysis]
3 Karbalaei S, Goldsmith CR. Recent advances in the preclinical development of responsive MRI contrast agents capable of detecting hydrogen peroxide. Journal of Inorganic Biochemistry 2022. [DOI: 10.1016/j.jinorgbio.2022.111763] [Reference Citation Analysis]
4 Geraldes CF, Castro MMC, Peters JA. Mn(III) porphyrins as potential MRI contrast agents for diagnosis and MRI-guided therapy. Coordination Chemistry Reviews 2021;445:214069. [DOI: 10.1016/j.ccr.2021.214069] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
5 Kras EA, Snyder EM, Sokolow GE, Morrow JR. Distinct Coordination Chemistry of Fe(III)-Based MRI Probes. Acc Chem Res 2022;55:1435-44. [PMID: 35482819 DOI: 10.1021/acs.accounts.2c00102] [Reference Citation Analysis]
6 Rodríguez-rodríguez A, Zaiss M, Esteban-gómez D, Angelovski G, Platas-iglesias C. Paramagnetic chemical exchange saturation transfer agents and their perspectives for application in magnetic resonance imaging. International Reviews in Physical Chemistry 2021;40:51-79. [DOI: 10.1080/0144235x.2020.1823167] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Zhou IY, Ramsay IA, Ay I, Pantazopoulos P, Rotile NJ, Wong A, Caravan P, Gale EM. Positron Emission Tomography-Magnetic Resonance Imaging Pharmacokinetics, In Vivo Biodistribution, and Whole-Body Elimination of Mn-PyC3A. Invest Radiol 2021;56:261-70. [PMID: 33136686 DOI: 10.1097/RLI.0000000000000736] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Nagendraraj T, Kumaran SS, Mayilmurugan R. Mn(II) complexes of phenylenediamine based macrocyclic ligands as T1-MRI contrast agents. J Inorg Biochem 2021;228:111684. [PMID: 34929541 DOI: 10.1016/j.jinorgbio.2021.111684] [Reference Citation Analysis]
9 Pérez-Lourido P, Madarasi E, Antal F, Esteban-Gómez D, Wang G, Angelovski G, Platas-Iglesias C, Tircsó G, Valencia L. Stable and inert macrocyclic cobalt(II) and nickel(II) complexes with paraCEST response. Dalton Trans 2022;51:1580-93. [PMID: 34991150 DOI: 10.1039/d1dt03217h] [Reference Citation Analysis]
10 Castro G, Wang G, Gambino T, Esteban-Gómez D, Valencia L, Angelovski G, Platas-Iglesias C, Pérez-Lourido P. Lanthanide(III) Complexes Based on an 18-Membered Macrocycle Containing Acetamide Pendants. Structural Characterization and paraCEST Properties. Inorg Chem 2021;60:1902-14. [PMID: 33471999 DOI: 10.1021/acs.inorgchem.0c03385] [Reference Citation Analysis]
11 Kálmán FK, Nagy V, Uzal-Varela R, Pérez-Lourido P, Esteban-Gómez D, Garda Z, Pota K, Mezei R, Pallier A, Tóth É, Platas-Iglesias C, Tircsó G. Expanding the Ligand Classes Used for Mn(II) Complexation: Oxa-aza Macrocycles Make the Difference. Molecules 2021;26:1524. [PMID: 33802241 DOI: 10.3390/molecules26061524] [Reference Citation Analysis]
12 Abozeid SM, Chowdhury MSI, Asik D, Spernyak JA, Morrow JR. Liposomal Fe(III) Macrocyclic Complexes with Hydroxypropyl Pendants as MRI Probes. ACS Appl Bio Mater 2021;4:7951-60. [PMID: 35006776 DOI: 10.1021/acsabm.1c00879] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Xie D, Yu M, Xie ZL, Kadakia RT, Chung C, Ohman LE, Javanmardi K, Que EL. Versatile Nickel(II) Scaffolds as Coordination-Induced Spin-State Switches for 19 F Magnetic Resonance-Based Detection. Angew Chem Int Ed Engl 2020;59:22523-30. [PMID: 32790890 DOI: 10.1002/anie.202010587] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Sathiyajith C, Hallett AJ, Edwards PG. Synthesis, photophysical characterization, relaxometric studies and molecular docking studies of gadolinium-free contrast agents for dual modal imaging. Results in Chemistry 2022;4:100307. [DOI: 10.1016/j.rechem.2022.100307] [Reference Citation Analysis]
15 Pietsch H. Current and Future MR Contrast Agents: Seeking a Better Chemical Stability and Relaxivity for Optimal Safety and Efficacy. Invest Radiol 2020;55:589-91. [DOI: 10.1097/rli.0000000000000710] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Kras EA, Abozeid SM, Eduardo W, Spernyak JA, Morrow JR. Comparison of phosphonate, hydroxypropyl and carboxylate pendants in Fe(III) macrocyclic complexes as MRI contrast agents. J Inorg Biochem 2021;225:111594. [PMID: 34517167 DOI: 10.1016/j.jinorgbio.2021.111594] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Bonnet CS, Tóth É. Metal-based environment-sensitive MRI contrast agents. Curr Opin Chem Biol 2021;61:154-69. [PMID: 33706246 DOI: 10.1016/j.cbpa.2021.01.013] [Reference Citation Analysis]
18 Uzal-Varela R, Valencia L, Lalli D, Maneiro M, Esteban-Gómez D, Platas-Iglesias C, Botta M, Rodríguez-Rodríguez A. Understanding the Effect of the Electron Spin Relaxation on the Relaxivities of Mn(II) Complexes with Triazacyclononane Derivatives. Inorg Chem 2021;60:15055-68. [PMID: 34618439 DOI: 10.1021/acs.inorgchem.1c02057] [Reference Citation Analysis]
19 Garda Z, Molnár E, Hamon N, Barriada JL, Esteban-Gómez D, Váradi B, Nagy V, Pota K, Kálmán FK, Tóth I, Lihi N, Platas-Iglesias C, Tóth É, Tripier R, Tircsó G. Complexation of Mn(II) by Rigid Pyclen Diacetates: Equilibrium, Kinetic, Relaxometric, Density Functional Theory, and Superoxide Dismutase Activity Studies. Inorg Chem 2021;60:1133-48. [PMID: 33378171 DOI: 10.1021/acs.inorgchem.0c03276] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Wang H, Cleary MB, Lewis LC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Enzyme Control Over Ferric Iron Magnetostructural Properties. Angew Chem Int Ed Engl 2021. [PMID: 34814231 DOI: 10.1002/anie.202114019] [Reference Citation Analysis]
21 Porcar-Tost O, Pallier A, Esteban-Gómez D, Illa O, Platas-Iglesias C, Tóth É, Ortuño RM. Stability, relaxometric and computational studies on Mn2+ complexes with ligands containing a cyclobutane scaffold. Dalton Trans 2021;50:1076-85. [PMID: 33367361 DOI: 10.1039/d0dt03402a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Sokolow GE, Crawley MR, Morphet DR, Asik D, Spernyak JA, Mcgray AJR, Cook TR, Morrow JR. Metal−Organic Polyhedron with Four Fe(III) Centers Producing Enhanced T 1 Magnetic Resonance Imaging Contrast in Tumors. Inorg Chem . [DOI: 10.1021/acs.inorgchem.1c03660] [Reference Citation Analysis]
23 Uzal-Varela R, Rodríguez-Rodríguez A, Martínez-Calvo M, Carniato F, Lalli D, Esteban-Gómez D, Brandariz I, Pérez-Lourido P, Botta M, Platas-Iglesias C. Mn2+ Complexes Containing Sulfonamide Groups with pH-Responsive Relaxivity. Inorg Chem 2020;59:14306-17. [PMID: 32962345 DOI: 10.1021/acs.inorgchem.0c02098] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Wang H, Wong A, Lewis LC, Nemeth GR, Jordan VC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Rational Ligand Design Enables pH Control over Aqueous Iron Magnetostructural Dynamics and Relaxometric Properties. Inorg Chem 2020;59:17712-21. [PMID: 33216537 DOI: 10.1021/acs.inorgchem.0c02923] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Asik D, Abozeid SM, Turowski SG, Spernyak JA, Morrow JR. Dinuclear Fe(III) Hydroxypropyl-Appended Macrocyclic Complexes as MRI Probes. Inorg Chem 2021;60:8651-64. [PMID: 34110140 DOI: 10.1021/acs.inorgchem.1c00634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]