BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Park J, Cho H, Hwang D, Kim S, Moon I, Kim M. Design of a Novel Process for Continuous Lactide Synthesis from Lactic Acid. Ind Eng Chem Res 2018;57:11955-62. [DOI: 10.1021/acs.iecr.8b02419] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Hur J, Park J, Landon RS, Moon I. Optimization of a Reactive Distillation Process for the Synthesis of Dialkyl Carbonate Considering Side Reactions. Ind Eng Chem Res 2019;58:17898-905. [DOI: 10.1021/acs.iecr.9b02629] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
2 Wang Y, Li M, Chen J, Tao Y, Wang X. O-to-S Substitution Enables Dovetailing Conflicting Cyclizability, Polymerizability, and Recyclability: Dithiolactone vs. Dilactone. Angew Chem Int Ed Engl 2021;60:22547-53. [PMID: 34424604 DOI: 10.1002/anie.202109767] [Reference Citation Analysis]
3 Park J, Qi M, Kim J, Noh W, Lee I, Moon I. Exergoeconomic optimization of liquid air production by use of liquefied natural gas cold energy. Energy 2020;207:118193. [DOI: 10.1016/j.energy.2020.118193] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
4 Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019;9:8012-67. [DOI: 10.1021/acscatal.9b01665] [Cited by in Crossref: 72] [Cited by in F6Publishing: 38] [Article Influence: 24.0] [Reference Citation Analysis]
5 Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JM. Continuous Flow Upgrading of Selected C2-C6 Platform Chemicals Derived from Biomass. Chem Rev 2020;120:7219-347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Cited by in Crossref: 52] [Cited by in F6Publishing: 15] [Article Influence: 26.0] [Reference Citation Analysis]
6 Botvin V, Karaseva S, Salikova D, Dusselier M. Syntheses and chemical transformations of glycolide and lactide as monomers for biodegradable polymers. Polymer Degradation and Stability 2021;183:109427. [DOI: 10.1016/j.polymdegradstab.2020.109427] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
7 Park J, Cho S, Qi M, Noh W, Lee I, Moon I. Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility. Energy 2021;216:119308. [DOI: 10.1016/j.energy.2020.119308] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 15.0] [Reference Citation Analysis]
8 Lim J, Cho H, Son KC, Yoo Y, Kim J. Design and Economic Assessment of Alternative Evaporation Processes for Poly-Lactic Acid Production. Polymers (Basel) 2022;14:2120. [PMID: 35632002 DOI: 10.3390/polym14102120] [Reference Citation Analysis]
9 Park J, Lee I, You F, Moon I. Economic Process Selection of Liquefied Natural Gas Regasification: Power Generation and Energy Storage Applications. Ind Eng Chem Res 2019;58:4946-56. [DOI: 10.1021/acs.iecr.9b00179] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 5.7] [Reference Citation Analysis]
10 Cunha BLC, Bahú JO, Xavier LF, Crivellin S, de Souza SDA, Lodi L, Jardini AL, Filho RM, Schiavon MIRB, Concha VOC, Severino P, Souto EB. Lactide: Production Routes, Properties, and Applications. Bioengineering 2022;9:164. [DOI: 10.3390/bioengineering9040164] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Kim Y, Kim T, Park C, Lee J, Cho H, Kim M, Moon I. Development of novel flow distribution apparatus for simulated moving bed to improve degree of mixing. Computers & Chemical Engineering 2022;156:107553. [DOI: 10.1016/j.compchemeng.2021.107553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Xu X, Liu L. A study on highly concentrated lactic acid and the synthesis of lactide from its solution. Journal of Chemical Research 2021;45:856-64. [DOI: 10.1177/17475198211021013] [Reference Citation Analysis]
13 Park J, You F, Cho H, Lee I, Moon I. Novel massive thermal energy storage system for liquefied natural gas cold energy recovery. Energy 2020;195:117022. [DOI: 10.1016/j.energy.2020.117022] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
14 Wang Y, Li M, Chen J, Tao Y, Wang X. O‐to‐S Substitution Enables Dovetailing Conflicting Cyclizability, Polymerizability, and Recyclability: Dithiolactone vs. Dilactone. Angewandte Chemie 2021;133:22721-7. [DOI: 10.1002/ange.202109767] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
15 Brei V, Varvarin A, Levytska S, Glushchuk Y. VAPOR-PHASE SYNTHESIS OF LACTIDE FROM ETHYL LACTATE OVER TiO2/SiO2 CATALYST. Ukr Chem Journ 2019;85:31-7. [DOI: 10.33609/0041-6045.85.7.2019.31-37] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Lu S, Zhang J, Wu Z, Su Z, Huang J, Liang Y, Xiao F. Catalytic Oxidation of Ethyl Lactate to Ethyl Pyruvate over Au-Based Catalyst Using Authentic Air as Oxidant. Catal Surv Asia. [DOI: 10.1007/s10563-022-09359-7] [Reference Citation Analysis]
17 Park J, You F, Mun H, Lee I. Liquefied natural gas supply chain using liquid air as a cold carrier: Novel method for energy recovery. Energy Conversion and Management 2021;227:113611. [DOI: 10.1016/j.enconman.2020.113611] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 14.0] [Reference Citation Analysis]