BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kaleekkal NJ, Thanigaivelan A, Durga M, Girish R, Rana D, Soundararajan P, Mohan D. Graphene Oxide Nanocomposite Incorporated Poly(ether imide) Mixed Matrix Membranes for in Vitro Evaluation of Its Efficacy in Blood Purification Applications. Ind Eng Chem Res 2015;54:7899-913. [DOI: 10.1021/acs.iecr.5b01655] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Liu R, Wang Y, Ge X, Yu P, Liu H, Wang M, Lu W, Fu Q. Polydopamine/polyethyleneimine complex adhered to micrometer-sized magnetic carbon fibers for high-efficiency hemoperfusion. Journal of Biomaterials Science, Polymer Edition 2017;28:1444-68. [DOI: 10.1080/09205063.2017.1330242] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
2 Qiao Y, Zheng X. Investigation of the fluorescence quenching behavior of PEI-doped silica nanoparticles and its applications. RSC Adv 2016;6:97187-93. [DOI: 10.1039/c6ra21543b] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
3 Yu X, Zhu Y, Zhang T, Deng L, Li P, Wang X, Hsiao BS. Heparinized thin-film composite membranes with sub-micron ridge structure for efficient hemodialysis. Journal of Membrane Science 2020;599:117706. [DOI: 10.1016/j.memsci.2019.117706] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
4 Jacob Kaleekkal N. Heparin immobilized graphene oxide in polyetherimide membranes for hemodialysis with enhanced hemocompatibility and removal of uremic toxins. Journal of Membrane Science 2021;623:119068. [DOI: 10.1016/j.memsci.2021.119068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
5 Fathizadeh M, Xu WL, Zhou F, Yoon Y, Yu M. Graphene Oxide: A Novel 2-Dimensional Material in Membrane Separation for Water Purification. Adv Mater Interfaces 2017;4:1600918. [DOI: 10.1002/admi.201600918] [Cited by in Crossref: 98] [Cited by in F6Publishing: 76] [Article Influence: 19.6] [Reference Citation Analysis]
6 Bala S, Nithya D, Doraisamy M. Exploring the effects of graphene oxide concentration on properties and antifouling performance of PEES/GO ultrafiltration membranes. High Performance Polymers 2018;30:375-83. [DOI: 10.1177/0954008317698547] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hassan EA, Ge D, Zhu S, Yang L, Zhou J, Yu M. Enhancing CF/PEEK composites by CF decoration with polyimide and loosely-packed CNT arrays. Composites Part A: Applied Science and Manufacturing 2019;127:105613. [DOI: 10.1016/j.compositesa.2019.105613] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
8 Hassan EA, Yang L, Elagib TH, Ge D, Lv X, Zhou J, Yu M, Zhu S. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites. Composites Part B: Engineering 2019;171:70-7. [DOI: 10.1016/j.compositesb.2019.04.015] [Cited by in Crossref: 43] [Cited by in F6Publishing: 3] [Article Influence: 14.3] [Reference Citation Analysis]
9 Cheng Y, Fu C, Hsiao Y, Chien C, Juang R. Clearance of low molecular-weight uremic toxins p-cresol, creatinine, and urea from simulated serum by adsorption. Journal of Molecular Liquids 2018;252:203-10. [DOI: 10.1016/j.molliq.2017.12.084] [Cited by in Crossref: 24] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
10 Zeng L, Zhu Z, Sun DW. Novel graphene oxide/polymer composite membranes for the food industry: structures, mechanisms and recent applications. Crit Rev Food Sci Nutr 2022;:1-18. [PMID: 35348019 DOI: 10.1080/10408398.2022.2054937] [Reference Citation Analysis]
11 Consiglio G, Di Pietro P, D'Urso L, Forte G, Grasso G, Sgarlata C, Cossement D, Snyders R, Satriano C. Surface tailoring of polyacrylate-grafted graphene oxide for controlled interactions at the biointerface. J Colloid Interface Sci 2017;506:532-42. [PMID: 28756320 DOI: 10.1016/j.jcis.2017.07.080] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
12 Reyes-rodríguez P, Ávila-orta C, Andrade-guel M, Cortés-hernández D, Herrera-guerrero A, Cabello-alvarado C, Sánchez-fuentes J, Ramos-martínez V, Valdez-garza J, Hurtado-lópez G. Synthesis and characterization of magnetic nanoparticles Zn1-xMgxFe2O4 with partial substitution of Mg2+ (x= 0.0, 0.25, 0.5, 0.75 and 1.0) for adsorption of uremic toxins. Ceramics International 2020;46:27913-21. [DOI: 10.1016/j.ceramint.2020.08.019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Modi A, Bellare J. Efficient separation of biological macromolecular proteins by polyethersulfone hollow fiber ultrafiltration membranes modified with Fe3O4 nanoparticles-decorated carboxylated graphene oxide nanosheets. International Journal of Biological Macromolecules 2019;135:798-807. [DOI: 10.1016/j.ijbiomac.2019.05.200] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
14 Wei Y, Zhang Y, Gao X, Yuan Y, Su B, Gao C. Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 2016;108:568-75. [DOI: 10.1016/j.carbon.2016.07.056] [Cited by in Crossref: 82] [Cited by in F6Publishing: 41] [Article Influence: 13.7] [Reference Citation Analysis]
15 Moulod M, Moghaddam S. Insights from molecular dynamics simulations of albumin adsorption on hydrophilic and hydrophobic surfaces. J Mol Graph Model 2022;112:108120. [PMID: 34998131 DOI: 10.1016/j.jmgm.2021.108120] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zambare RS, Dhopte KB, Patwardhan AV, Nemade PR. Polyamine functionalized graphene oxide polysulfone mixed matrix membranes with improved hydrophilicity and anti-fouling properties. Desalination 2017;403:24-35. [DOI: 10.1016/j.desal.2016.02.003] [Cited by in Crossref: 54] [Cited by in F6Publishing: 17] [Article Influence: 10.8] [Reference Citation Analysis]
17 Modi A, Verma SK, Bellare J. Surface-Functionalized Poly(Ether Sulfone) Composite Hollow Fiber Membranes with Improved Biocompatibility and Uremic Toxins Clearance for Bioartificial Kidney Application. ACS Appl Bio Mater 2020;3:1589-97. [DOI: 10.1021/acsabm.9b01183] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Lu Y, Hao J, Xiao G, Zhao H, Hu Z, Wang T. In situ polymerization and performance of alicyclic polyimide/graphene oxide nanocomposites derived from 6FAPB and CBDA. Applied Surface Science 2017;394:78-86. [DOI: 10.1016/j.apsusc.2016.10.062] [Cited by in Crossref: 23] [Cited by in F6Publishing: 7] [Article Influence: 4.6] [Reference Citation Analysis]
19 Yu X, Shen L, Zhu Y, Li X, Yang Y, Wang X, Zhu M, Hsiao BS. High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxin removal. Journal of Membrane Science 2017;523:173-84. [DOI: 10.1016/j.memsci.2016.09.057] [Cited by in Crossref: 60] [Cited by in F6Publishing: 30] [Article Influence: 12.0] [Reference Citation Analysis]
20 Modi A, Bellare J. Efficient removal of 2,4-dichlorophenol from contaminated water and alleviation of membrane fouling by high flux polysulfone-iron oxide/graphene oxide composite hollow fiber membranes. Journal of Water Process Engineering 2020;33:101113. [DOI: 10.1016/j.jwpe.2019.101113] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
21 Mutharasi Y, Kaleekkal NJ, Arumugham T, Banat F, Kapavarapu MS. Antifouling and photocatalytic properties of 2-D Zn/Al layered double hydroxide tailored low-pressure membranes. Chemical Engineering and Processing - Process Intensification 2020;158:108191. [DOI: 10.1016/j.cep.2020.108191] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
22 G.n. M, M. HK. Performance studies of GO/PF127 incorporated Polyetherimide Ultrafiltration membranes for the rejection of oil from oil wastewater. Chemical Engineering Research and Design 2021;168:214-26. [DOI: 10.1016/j.cherd.2021.01.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Kaleekkal NJ, Thanigaivelan A, Rana D, Mohan D. Studies on carboxylated graphene oxide incorporated polyetherimide mixed matrix ultrafiltration membranes. Materials Chemistry and Physics 2017;186:146-58. [DOI: 10.1016/j.matchemphys.2016.10.040] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 5.4] [Reference Citation Analysis]
24 Quan S, Li SW, Xiao YC, Shao L. CO 2 -selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO 2 capture. International Journal of Greenhouse Gas Control 2017;56:22-9. [DOI: 10.1016/j.ijggc.2016.11.010] [Cited by in Crossref: 51] [Cited by in F6Publishing: 25] [Article Influence: 10.2] [Reference Citation Analysis]
25 Mollahosseini A, Abdelrasoul A, Shoker A. A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development. Materials Chemistry and Physics 2020;248:122911. [DOI: 10.1016/j.matchemphys.2020.122911] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
26 Salehi E, Heidary F, Daraei P, Keyhani M, Behjomanesh M. Carbon nanostructures for advanced nanocomposite mixed matrix membranes: a comprehensive overview. Reviews in Chemical Engineering 2020;36:723-48. [DOI: 10.1515/revce-2017-0073] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
27 Saranya R, Beril J, Mohan D. Effects of polymer blend composition on membrane properties and separation performance of PEES/PEI blend membrane. High Performance Polymers 2017;29:467-75. [DOI: 10.1177/0954008316650271] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]