BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lynch CI, Rao S, Sansom MSP. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Chem Rev 2020;120:10298-335. [PMID: 32841020 DOI: 10.1021/acs.chemrev.9b00830] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 13.5] [Reference Citation Analysis]
Number Citing Articles
1 Wolanin J, Michel L, Tabacchioni D, Zanotti JM, Peters J, Imaz I, Coasne B, Plazanet M, Picard C. Heterogeneous Microscopic Dynamics of Intruded Water in a Superhydrophobic Nanoconfinement: Neutron Scattering and Molecular Modeling. J Phys Chem B 2021;125:10392-9. [PMID: 34492185 DOI: 10.1021/acs.jpcb.1c06791] [Reference Citation Analysis]
2 Zhou S, Zhang Y, Cheng LT, Li B. Prediction of multiple dry-wet transition pathways with a mesoscale variational approach. J Chem Phys 2021;155:124110. [PMID: 34598586 DOI: 10.1063/5.0061773] [Reference Citation Analysis]
3 Wang H, Su Y, Wang W, Meng Y, Xie X, Xu J, Zhang Q. A NEW FRACTAL APPARENT PERMEABILITY MODEL FOR LIQUID FLOW IN TORTUOUS NANOPORES FROM LATTICE BOLTZMANN SIMULATIONS TO THE THEORETICAL MODEL. Fractals 2021;29:2150233. [DOI: 10.1142/s0218348x21502339] [Reference Citation Analysis]
4 Zhao Z, Zhou R, Sun C. Hierarchical thermal transport in nanoconfined water. J Chem Phys 2020;153:234701. [PMID: 33353331 DOI: 10.1063/5.0030738] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Acharya A, Prajapati JD, Kleinekathöfer U. Atomistic Simulation of Molecules Interacting with Biological Nanopores: From Current Understanding to Future Directions. J Phys Chem B 2022. [PMID: 35616602 DOI: 10.1021/acs.jpcb.2c01173] [Reference Citation Analysis]
6 Lanphere C, Ciccone J, Dorey A, Hagleitner-ertuğrul N, Knyazev D, Haider S, Howorka S. Triggered Assembly of a DNA-Based Membrane Channel. J Am Chem Soc . [DOI: 10.1021/jacs.1c06598] [Reference Citation Analysis]
7 Wang D, Tian Y, Jiang L. Abnormal Properties of Low-Dimensional Confined Water. Small 2021;17:e2100788. [PMID: 34176214 DOI: 10.1002/smll.202100788] [Reference Citation Analysis]
8 Pardehkhorram R, Andrieu-Brunsen A. Pushing the limits of nanopore transport performance by polymer functionalization. Chem Commun (Camb) 2022. [PMID: 35394003 DOI: 10.1039/d2cc01164f] [Reference Citation Analysis]
9 Wang H, Su Y, Wang W. Improved lattice Boltzmann method to simulate liquid flow in nanoporous media: coupling molecular dynamics simulations and theoretical model. Advances in Water Resources 2022. [DOI: 10.1016/j.advwatres.2022.104239] [Reference Citation Analysis]
10 Mochizuki K. Absorption of mechanical energy via formation of ice nanotubes in zeolites. Phys Chem Chem Phys 2021;23:20307-12. [PMID: 34486614 DOI: 10.1039/d1cp01482j] [Reference Citation Analysis]
11 Zhao W, Liang L, Kong Z, Shen J. A review on desalination by graphene-based biomimetic nanopore: From the computational modelling perspective. Journal of Molecular Liquids 2021;342:117582. [DOI: 10.1016/j.molliq.2021.117582] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Gonzalez MA, Zaragoza A, Lynch CI, Sansom MSP, Valeriani C. Influence of water models on water movement through AQP1. J Chem Phys 2021;155:154502. [PMID: 34686053 DOI: 10.1063/5.0063986] [Reference Citation Analysis]
13 Blanco-González A, Calvelo M, Garrido PF, Amorín M, Granja JR, Piñeiro Á, Garcia-Fandino R. Transmembrane Self-Assembled Cyclic Peptide Nanotubes Based on α-Residues and Cyclic δ-Amino Acids: A Computational Study. Front Chem 2021;9:704160. [PMID: 34386480 DOI: 10.3389/fchem.2021.704160] [Reference Citation Analysis]
14 Yong H, He X, Merlitz H. Connection between Intrapore Free Energy, Molecule Permeation, and Selectivity of Nanofiltration Membranes. Macromolecules. [DOI: 10.1021/acs.macromol.2c00317] [Reference Citation Analysis]
15 Serwatka T, Roy P. Ground state of asymmetric tops with DMRG: Water in one dimension. J Chem Phys 2022;156:044116. [DOI: 10.1063/5.0078770] [Reference Citation Analysis]
16 Coudert F, Boutin A, Fuchs AH. Open questions on water confined in nanoporous materials. Commun Chem 2021;4. [DOI: 10.1038/s42004-021-00544-9] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Rao S, Klesse G, Lynch CI, Tucker SJ, Sansom MSP. Molecular Simulations of Hydrophobic Gating of Pentameric Ligand Gated Ion Channels: Insights into Water and Ions. J Phys Chem B 2021;125:981-94. [PMID: 33439645 DOI: 10.1021/acs.jpcb.0c09285] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
18 Pfeffermann J, Goessweiner-Mohr N, Pohl P. The energetic barrier to single-file water flow through narrow channels. Biophys Rev 2021;13:913-23. [PMID: 35035593 DOI: 10.1007/s12551-021-00875-w] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Baek S, Kwon S, Bohn PW. Potential-Induced Wetting and Dewetting in Hydrophobic Nanochannels for Mass Transport Control. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.100980] [Reference Citation Analysis]
20 Sahoo T, Serwatka T, Roy PN. A path integral ground state approach for asymmetric top rotors with nuclear spin symmetry: Application to water chains. J Chem Phys 2021;154:244305. [PMID: 34241367 DOI: 10.1063/5.0053051] [Reference Citation Analysis]
21 Both AK, Gao Y, Zeng XC, Cheung CL. Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. Nanoscale 2021;13:7447-70. [PMID: 33876814 DOI: 10.1039/d1nr00751c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
22 Choudhury K, Kasimova MA, McComas S, Howard RJ, Delemotte L. An open state of a voltage-gated sodium channel involving a π-helix and conserved pore-facing asparagine. Biophys J 2021:S0006-3495(21)03901-1. [PMID: 34890580 DOI: 10.1016/j.bpj.2021.12.010] [Reference Citation Analysis]
23 Miao M, Shao X, Cai W. Conformational Change from U- to I-Shape of Ion Transporters Facilitates K+ Transport across Lipid Bilayers. J Phys Chem B 2022. [PMID: 35142530 DOI: 10.1021/acs.jpcb.1c09423] [Reference Citation Analysis]
24 Klesse G, Tucker SJ, Sansom MSP. Electric Field Induced Wetting of a Hydrophobic Gate in a Model Nanopore Based on the 5-HT3 Receptor Channel. ACS Nano 2020;14:10480-91. [PMID: 32673478 DOI: 10.1021/acsnano.0c04387] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
25 Lynch CI, Klesse G, Rao S, Tucker SJ, Sansom MSP. Water Nanoconfined in a Hydrophobic Pore: Molecular Dynamics Simulations of Transmembrane Protein 175 and the Influence of Water Models. ACS Nano 2021;15:19098-108. [PMID: 34784172 DOI: 10.1021/acsnano.1c06443] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
26 Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. Eur Phys J E Soft Matter 2021;44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Reference Citation Analysis]
27 Hardiagon A, Murail S, Huang LB, van der Lee A, Sterpone F, Barboiu M, Baaden M. Molecular dynamics simulations reveal statistics and microscopic mechanisms of water permeation in membrane-embedded artificial water channel nanoconstructs. J Chem Phys 2021;154:184102. [PMID: 34241013 DOI: 10.1063/5.0044360] [Reference Citation Analysis]
28 Winarto, Yamamoto E, Yasuoka K. Water molecules in CNT-Si3N4 membrane: Properties and the separation effect for water-alcohol solution. J Chem Phys 2021;155:104701. [PMID: 34525818 DOI: 10.1063/5.0055027] [Reference Citation Analysis]
29 Graham RS, Wheatley RJ. Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions. Chem Commun (Camb) 2022. [PMID: 35642644 DOI: 10.1039/d2cc01820a] [Reference Citation Analysis]
30 Negoro T, Hirata K, Lisy JM, Ishiuchi SI, Fujii M. Potassium and sodium ion complexes with a partial peptide of the selectivity filter in K+ channels studied by cold ion trap infrared spectroscopy: the effect of hydration. Phys Chem Chem Phys 2021;23:12045-50. [PMID: 34075971 DOI: 10.1039/d1cp00936b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Yi F, Tao M, Zhang S, Han X, Min X. Pillararene‐Based Nanochannels for Para‐Xylene Separation from Xylene Isomers. ChemistrySelect 2021;6:13969-74. [DOI: 10.1002/slct.202103809] [Reference Citation Analysis]
32 Calvelo M, Lynch CI, Granja JR, Sansom MSP, Garcia-Fandiño R. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. ACS Nano 2021;15:7053-64. [PMID: 33739081 DOI: 10.1021/acsnano.1c00155] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
33 Sun Z, Wang S, Xiong H, Wu K, Shi J. Optimal nanocone geometry for water flow. AIChE Journal 2022;68. [DOI: 10.1002/aic.17543] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 17.0] [Reference Citation Analysis]
34 Belovolova LV, Glushkov MV. Porous Matrices and Specific Features of Water in Nanostructures. Phys Wave Phen 2021;29:249-77. [DOI: 10.3103/s1541308x21030031] [Reference Citation Analysis]
35 Huang L, Di Vincenzo M, Li Y, Barboiu M. Artificial Water Channels: Towards Biomimetic Membranes for Desalination. Chem Eur J 2021;27:2224-39. [DOI: 10.1002/chem.202003470] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
36 Jia Y, Lu X, Cao Z, Yan T. From a bulk to nanoconfined water chain: bridge water at the pore of the (6,6) carbon nanotube. Phys Chem Chem Phys 2020;22:25747-59. [PMID: 33146653 DOI: 10.1039/d0cp02531c] [Reference Citation Analysis]
37 Olivieri JF, Hynes JT, Laage D. Confined Water's Dielectric Constant Reduction Is Due to the Surrounding Low Dielectric Media and Not to Interfacial Molecular Ordering. J Phys Chem Lett 2021;12:4319-26. [PMID: 33914550 DOI: 10.1021/acs.jpclett.1c00447] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
38 Li L, Fang F, Li J, Zhou G, Yang Z. Mechanistic studies on the anomalous transport behaviors of water molecules in nanochannels of multilayer graphynes. Phys Chem Chem Phys 2022;24:2534-42. [PMID: 35023526 DOI: 10.1039/d1cp04378a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Ding C, Zhao Y, Su J. Electropumping Phenomenon in Modified Carbon Nanotubes. Langmuir 2021;37:12318-26. [PMID: 34644087 DOI: 10.1021/acs.langmuir.1c01793] [Reference Citation Analysis]
40 Muñoz-Santiburcio D, Marx D. Confinement-Controlled Aqueous Chemistry within Nanometric Slit Pores. Chem Rev 2021;121:6293-320. [PMID: 34006106 DOI: 10.1021/acs.chemrev.0c01292] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
41 Sen S, Risbud SH, Bartl MH. Thermodynamic and Kinetic Transitions of Liquids in Nanoconfinement. Acc Chem Res 2020;53:2869-78. [PMID: 33186005 DOI: 10.1021/acs.accounts.0c00502] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Xie Z, Li Z, Li J, Kou J, Yao J, Fan J. Electric field-induced gas dissolving in aqueous solutions. J Chem Phys 2021;154:024705. [PMID: 33445907 DOI: 10.1063/5.0037387] [Cited by in Crossref: 7] [Article Influence: 7.0] [Reference Citation Analysis]
43 Qin Y, You Y, Jin G, Zhu W, Zhu Y, Wang Q, Lu X, Shi Y. Atomistic insight into the lubrication of glycerol aqueous solution: The role of the solid interface‐induced microstructure of fluid molecules. AIChE Journal 2022;68. [DOI: 10.1002/aic.17581] [Reference Citation Analysis]
44 Pant P, Pathak A, Jayaram B. Bicyclo-DNA mimics with enhanced protein binding affinities: insights from molecular dynamics simulations. J Biomol Struct Dyn 2022;:1-8. [PMID: 35403569 DOI: 10.1080/07391102.2022.2061594] [Reference Citation Analysis]
45 Shen Y, Fei F, Zhong Y, Fan C, Sun J, Hu J, Gong B, Czajkowsky DM, Shao Z. Controlling Water Flow through a Synthetic Nanopore with Permeable Cations. ACS Cent Sci 2021;7:2092-8. [PMID: 34963901 DOI: 10.1021/acscentsci.1c01218] [Reference Citation Analysis]
46 Çınaroğlu SS, Biggin PC. Evaluating the Performance of Water Models with Host-Guest Force Fields in Binding Enthalpy Calculations for Cucurbit[7]uril-Guest Systems. J Phys Chem B 2021;125:1558-67. [PMID: 33538161 DOI: 10.1021/acs.jpcb.0c11383] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]