BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen G, Li Y, Bick M, Chen J. Smart Textiles for Electricity Generation. Chem Rev 2020;120:3668-720. [DOI: 10.1021/acs.chemrev.9b00821] [Cited by in Crossref: 387] [Cited by in F6Publishing: 412] [Article Influence: 193.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Q, He M, Pan X, Huang D, Long H, Jia M, Zhao Z, Zhang C, Xu M, Li S. High performance liquid-solid tubular triboelectric nanogenerator for scavenging water wave energy. Nano Energy 2022;103:107810. [DOI: 10.1016/j.nanoen.2022.107810] [Reference Citation Analysis]
2 Singh KB, Gautam N, Updhyay DD, Pandey G. Sonication-assisted synthesis of Ag@AgCl and Ag@AgCl-GO and their photocatalytic performances. Journal of Molecular Structure 2022;1269:133756. [DOI: 10.1016/j.molstruc.2022.133756] [Reference Citation Analysis]
3 Qu M, Wang H, Zhang R, Chen Q, Zhao Q, Liu R, Tang P, Bin Y. Poly(phthalazinone ether ketone) – Poly(3,4-ethylenedioxythiophene) fiber for thermoelectric and hydroelectric energy harvesting. Chemical Engineering Journal 2022;450:138093. [DOI: 10.1016/j.cej.2022.138093] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Qi Y, Kuang Y, Liu Y, Liu G, Zeng J, Zhao J, Wang L, Zhu M, Zhang C. Kirigami-inspired triboelectric nanogenerator as ultra-wide-band vibrational energy harvester and self-powered acceleration sensor. Applied Energy 2022;327:120092. [DOI: 10.1016/j.apenergy.2022.120092] [Reference Citation Analysis]
5 Liu Y, Cui Y, Wang B, Yang J. Coupled thermo-electric-mechanical modeling of hybrid thermoelectric-piezoelectric energy harvester. Sustainable Energy Technologies and Assessments 2022;54:102845. [DOI: 10.1016/j.seta.2022.102845] [Reference Citation Analysis]
6 Peng F, Gao M, Han Z, Liu D, Dai K, Mi L, Zhang D, Zheng G, Liu C, Shen C. One-step fabrication of sandwiched film based triboelectric nanogenerator for large-area energy harvester and precise self-powered sensor. Nano Energy 2022;103:107771. [DOI: 10.1016/j.nanoen.2022.107771] [Reference Citation Analysis]
7 Suhaimi MI, Nordin AN, Ralib AAM, Voiculescu I, Mak WC, Ming LL, Samsudin Z. Mechanical durability of screen-printed flexible silver traces for wearable devices. Sensing and Bio-Sensing Research 2022;38:100537. [DOI: 10.1016/j.sbsr.2022.100537] [Reference Citation Analysis]
8 Xiao X, Yin J, Shen S, Che Z, Wan X, Wang S, Chen J. Advances in solid-state fiber batteries for wearable bioelectronics. Current Opinion in Solid State and Materials Science 2022;26:101042. [DOI: 10.1016/j.cossms.2022.101042] [Reference Citation Analysis]
9 Martín-gonzález M, Caballero-calero O. Thermoelectric generators as an alternative for reliable powering of wearable devices with wasted heat. Journal of Solid State Chemistry 2022;316:123543. [DOI: 10.1016/j.jssc.2022.123543] [Reference Citation Analysis]
10 Meena JS, Choi SB, Jung S, Kim J. Recent progress of Ti3C2Tx-based MXenes for fabrication of multifunctional smart textiles. Applied Materials Today 2022;29:101612. [DOI: 10.1016/j.apmt.2022.101612] [Reference Citation Analysis]
11 Li W, Song Z, Kong H, Chen M, Liu S, Bao Y, Ma Y, Sun Z, Liu Z, Wang W, Niu L. An integrated wearable self-powered platform for real-time and continuous temperature monitoring. Nano Energy 2022;104:107935. [DOI: 10.1016/j.nanoen.2022.107935] [Reference Citation Analysis]
12 Júnior HLO, Neves RM, Monticeli FM, Dall Agnol L. Smart Fabric Textiles: Recent Advances and Challenges. Textiles 2022;2:582-605. [DOI: 10.3390/textiles2040034] [Reference Citation Analysis]
13 Abdelrahman MS, Elhadad SSM, El-naggar ME, Gaffer HE, Khattab TA. Ultraviolet-Sensitive Photoluminescent Spray-Coated Textile. Coatings 2022;12:1686. [DOI: 10.3390/coatings12111686] [Reference Citation Analysis]
14 Attar RM, Alshareef M, Snari RM, Alaysuy O, Aldawsari AM, Abu-melha S, El-metwaly NM. Development of novel photoluminescent fibers from recycled polyester waste using plasma-assisted dyeing toward ultraviolet sensing and protective textiles. Journal of Materials Research and Technology 2022;21:1630-1642. [DOI: 10.1016/j.jmrt.2022.09.115] [Reference Citation Analysis]
15 Guan H, Yang R, Li W, Tao Y, Chen C, Tai H, Su Y, Wang Y, Jiang Y, Li W. Self-powered multifunctional flexible sensor for wearable biomonitoring. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132996] [Reference Citation Analysis]
16 Sun Y, Shen S, Deng W, Tian G, Xiong D, Zhang H, Yang T, Wang S, Chen J, Yang W. Suppressing Piezoelectric Screening Effect at Atomic Scale for Enhanced Piezoelectricity. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.108024] [Reference Citation Analysis]
17 Ma X, Cai X, Yuan M, Qu Y, Tan Y, Chen F. Self-powered and flexible gas sensor using defect-engineered WS2/G heterostructure. Sensors and Actuators B: Chemical 2022;371:132523. [DOI: 10.1016/j.snb.2022.132523] [Reference Citation Analysis]
18 Wang Q, He S, Bowen CR, Xiao X, Oh JAS, Sun J, Zeng K, Lei W, Chen J. Porous pyroelectric ceramic with carbon nanotubes for high-performance thermal to electrical energy conversion. Nano Energy 2022;102:107703. [DOI: 10.1016/j.nanoen.2022.107703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Chen G, Shen S, Tat T, Zhao X, Zhou Y, Fang Y, Chen J. Wearable respiratory sensors for COVID‐19 monitoring. VIEW 2022;3:20220024. [DOI: 10.1002/viw.20220024] [Reference Citation Analysis]
20 Zhao Z, Liu D, Li Y, Wang ZL, Wang J. Direct-current triboelectric nanogenerator based on electrostatic breakdown effect. Nano Energy 2022;102:107745. [DOI: 10.1016/j.nanoen.2022.107745] [Reference Citation Analysis]
21 Zhao X, Zhang J, Lv K, Kong N, Shao Y, Tao J. Carbon nanotubes boosts the toughness and conductivity of wet-spun MXene fibers for fiber-shaped super capacitors. Carbon 2022;200:38-46. [DOI: 10.1016/j.carbon.2022.08.045] [Reference Citation Analysis]
22 Wang G, Liu X, Wang Y, Zheng Z, Zhu Z, Yin Y, Zhu L, Wang X. Energy Harvesting and Sensing Integrated Woven Structure Kneepad Based on Triboelectric Nanogenerators. Adv Materials Technologies 2022. [DOI: 10.1002/admt.202200973] [Reference Citation Analysis]
23 Chen M, Liu J, Li P, Gharavi H, Hao Y, Ouyang J, Hu J, Hu L, Hou C, Humar I, Wei L, Yang G, Tao G. Fabric computing: Concepts, opportunities, and challenges. The Innovation 2022;3:100340. [DOI: 10.1016/j.xinn.2022.100340] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Zhu S, Li Y, Yelemulati H, Deng X, Li Y, Wang J, Li X, Li G, Gkoupidenis P, Tai Y. An artificial remote tactile device with 3D depth-of-field sensation. Sci Adv 2022;8. [DOI: 10.1126/sciadv.abo5314] [Reference Citation Analysis]
25 Bai C, Ji K, Wang H, Zhang J, Hu G, Kong D. Intrinsically Stretchable Microbattery with Ultrahigh Deformability for Self-Powering Wearable Electronics. ACS Materials Lett 2022. [DOI: 10.1021/acsmaterialslett.2c00743] [Reference Citation Analysis]
26 Wu S, Zeng T, Liu Z, Ma G, Xiong Z, Zuo L, Zhou Z. 3D Printing Technology for Smart Clothing: A Topic Review. Materials (Basel) 2022;15:7391. [PMID: 36295455 DOI: 10.3390/ma15207391] [Reference Citation Analysis]
27 Huo B, Guo CY. Advances in Thermoelectric Composites Consisting of Conductive Polymers and Fillers with Different Architectures. Molecules 2022;27. [PMID: 36296524 DOI: 10.3390/molecules27206932] [Reference Citation Analysis]
28 Huang H, Feng Y, Yang X, Shen Y. Natural gum-based electronic ink with water-proofing self-healing and easy-cleaning properties for directly on-skin electronics. Biosens Bioelectron 2022;214:114547. [PMID: 35820252 DOI: 10.1016/j.bios.2022.114547] [Reference Citation Analysis]
29 Zhu C, Wu J, Yan J, Liu X. Advanced Fiber Materials for Wearable Electronics. Adv Fiber Mater . [DOI: 10.1007/s42765-022-00212-0] [Reference Citation Analysis]
30 Kang X, Zhu Z, Zhao T, Zhai W, Xu J, Lin Z, Zeng K, Wang B, Sun X, Chen P, Peng H. Hierarchically Assembled Counter Electrode for Fiber Solar Cell Showing Record Power Conversion Efficiency. Adv Funct Materials. [DOI: 10.1002/adfm.202207763] [Reference Citation Analysis]
31 Kim S, Xiao X, Chen J. Advances in Photoplethysmography for Personalized Cardiovascular Monitoring. Biosensors (Basel) 2022;12:863. [PMID: 36290999 DOI: 10.3390/bios12100863] [Reference Citation Analysis]
32 Ock IW, Zhao X, Tat T, Xu J, Chen J. Harvesting Hydropower via a Magnetoelastic Generator for Sustainable Water Splitting. ACS Nano 2022. [PMID: 36201791 DOI: 10.1021/acsnano.2c06540] [Reference Citation Analysis]
33 Mayer M, Xiao X, Yin J, Chen G, Xu J, Chen J. Advances in Bioinspired Triboelectric Nanogenerators. Adv Elect Materials. [DOI: 10.1002/aelm.202200782] [Reference Citation Analysis]
34 Alagumalai A, Mahian O, Vimal K, Yang L, Xiao X, Saeidi S, Zhang P, Saboori T, Wongwises S, Wang ZL, Chen J. A contextual framework development toward triboelectric nanogenerator commercialization. Nano Energy 2022;101:107572. [DOI: 10.1016/j.nanoen.2022.107572] [Reference Citation Analysis]
35 Basset P, Beeby SP, Bowen C, Chew ZJ, Delbani A, Dharmasena RDIG, Dudem B, Fan FR, Galayko D, Guo H, Hao J, Hou Y, Hu C, Jing Q, Jung YH, Karan SK, Kar-narayan S, Kim M, Kim S, Kuang Y, Lee KJ, Li J, Li Z, Long Y, Priya S, Pu X, Ruan T, Silva SRP, Wang HS, Wang K, Wang X, Wang ZL, Wu W, Xu W, Zhang H, Zhang Y, Zhu M. Roadmap on nanogenerators and piezotronics. APL Materials 2022;10:109201. [DOI: 10.1063/5.0085850] [Reference Citation Analysis]
36 Khir H, Pandey A, Saidur R, Shakeel Ahmad M, Abd Rahim N, Dewika M, Samykano M. Recent advancements and challenges in flexible low temperature dye sensitised solar cells. Sustainable Energy Technologies and Assessments 2022;53:102745. [DOI: 10.1016/j.seta.2022.102745] [Reference Citation Analysis]
37 Chen Z, Cui Y, Liang L, Wang H, Xu W, Zhang Q, Chen G. Flexible Film and Thermoelectric Device of Single-Walled Carbon Nanotube@Conductive Metal-Organic Framework Composite. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100276] [Reference Citation Analysis]
38 Zhang Z, Shao J, Nan Y, Willatzen M, Wang Z. Theory and shape optimization of acoustic driven triboelectric nanogenerators. Materials Today Physics 2022;27:100784. [DOI: 10.1016/j.mtphys.2022.100784] [Reference Citation Analysis]
39 Lan B, Xiao X, Carlo AD, Deng W, Yang T, Jin L, Tian G, Ao Y, Yang W, Chen J. Topological Nanofibers Enhanced Piezoelectric Membranes for Soft Bioelectronics. Adv Funct Materials. [DOI: 10.1002/adfm.202207393] [Reference Citation Analysis]
40 Xing F, Ou Z, Gao X, Chen B, Wang ZL. Harvesting Electrical Energy from High Temperature Environment by Aerogel Nano‐Covered Triboelectric Yarns. Adv Funct Materials. [DOI: 10.1002/adfm.202205275] [Reference Citation Analysis]
41 Ahmed H, Abdelrahman MS, Al-balakocy NG, Wen Z, Khattab TA. Preparation of Photochromic and Photoluminescent Nonwoven Fibrous Mat from Recycled Polyester Waste. J Polym Environ. [DOI: 10.1007/s10924-022-02587-y] [Reference Citation Analysis]
42 Gan L, Zeng Z, Lu H, Li D, Wei K, Cai G, Zhang Y. A large‐scalable spraying‐spinning process for multifunctional electronic yarns. SmartMat. [DOI: 10.1002/smm2.1151] [Reference Citation Analysis]
43 Wang J, Sun M, Pei X, Zheng L, Ma C, Liu J, Cao M, Bai J, Zhou M. Flexible Biofuel Cell‐In‐A‐Tube (i ez Tube): An Entirely Self‐Contained Biofuel Cell for Wearable Green Bio‐energy Harvesting. Adv Funct Materials. [DOI: 10.1002/adfm.202209697] [Reference Citation Analysis]
44 Paleo AJ, Krause B, Cerqueira MF, Muñoz E, Pötschke P, Rocha AM. Electronic Features of Cotton Fabric e-Textiles Prepared with Aqueous Carbon Nanofiber Inks. ACS Appl Eng Mater 2022. [DOI: 10.1021/acsaenm.2c00023] [Reference Citation Analysis]
45 Shen S, Xiao X, Yin J, Xiao X, Chen J. Self-Powered Smart Gloves Based on Triboelectric Nanogenerators. Small Methods 2022;:e2200830. [PMID: 36068171 DOI: 10.1002/smtd.202200830] [Reference Citation Analysis]
46 Xu J, Tat T, Zhao X, Zhou Y, Ngo D, Xiao X, Chen J. A programmable magnetoelastic sensor array for self-powered human–machine interface. Applied Physics Reviews 2022;9:031404. [DOI: 10.1063/5.0094289] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Zhao X, Li J, Zhou Y, Chen J. A soft haptic interface for programmable patterns of touch. Matter 2022;5:2590-3. [DOI: 10.1016/j.matt.2022.08.006] [Reference Citation Analysis]
48 Alsharief HH, Al-hazmi GA, Alzahrani SO, Almahri A, Alamrani NA, Alatawi NM, El-metwaly NM. Immobilization of strontium aluminate nanoparticles onto plasma-pretreated nonwoven polypropylene fibers by screen-printing toward photochromic textiles. Journal of Materials Research and Technology 2022;20:3146-3157. [DOI: 10.1016/j.jmrt.2022.08.104] [Reference Citation Analysis]
49 Sun F, Liu H, Din Y, Cong H, Dong Z. Appearance and conductivity of weft-knitted unibody positioning flexible sensor. IJCST 2022. [DOI: 10.1108/ijcst-03-2022-0039] [Reference Citation Analysis]
50 Liu L, Shi Q, Guo X, Zhang Z, Lee C. A facile frequency tuning strategy to realize vibration‐based hybridized piezoelectric‐triboelectric nanogenerators. EcoMat. [DOI: 10.1002/eom2.12279] [Reference Citation Analysis]
51 Rajappan A, Jumet B, Shveda RA, Decker CJ, Liu Z, Yap TF, Sanchez V, Preston DJ. Logic-enabled textiles. Proc Natl Acad Sci U S A 2022;119:e2202118119. [PMID: 35994641 DOI: 10.1073/pnas.2202118119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Owida HA, Al-ayyad M, Al-nabulsi JI, Ali S. Emerging Development of Auto-Charging Sensors for Respiration Monitoring. International Journal of Biomaterials 2022;2022:1-12. [DOI: 10.1155/2022/7098989] [Reference Citation Analysis]
53 Luo Q, Xiao K, Zhang J, Sun W. Direct-Current Triboelectric Nanogenerators Based on Semiconductor Structure. ACS Appl Electron Mater . [DOI: 10.1021/acsaelm.2c00758] [Reference Citation Analysis]
54 Elmoughni HM, Atalay O, Ozlem K, Menon AK. Thermoelectric Clothing for Body Heat Harvesting and Personal Cooling: Design and Fabrication of a Textile‐Integrated Flexible and Vertical Device. Energy Tech. [DOI: 10.1002/ente.202200528] [Reference Citation Analysis]
55 Zhang Z, Lu T, Yang D, Lu S, Cai R, Tan W. A Dual‐Function Sensor for Highly Sensitive Detection of Flame and Humidity. Small. [DOI: 10.1002/smll.202203334] [Reference Citation Analysis]
56 Deng Y, Wang Y, Xiao X, Saucedo BJ, Zhu Z, Xie M, Xu X, Yao K, Zhai Y, Zhang Z, Chen J. Progress in Hybridization of Covalent Organic Frameworks and Metal–Organic Frameworks. Small. [DOI: 10.1002/smll.202202928] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
57 Su Y, Li W, Cheng X, Zhou Y, Yang S, Zhang X, Chen C, Yang T, Pan H, Xie G, Chen G, Zhao X, Xiao X, Li B, Tai H, Jiang Y, Chen LQ, Li F, Chen J. High-performance piezoelectric composites via β phase programming. Nat Commun 2022;13:4867. [PMID: 35982033 DOI: 10.1038/s41467-022-32518-3] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
58 Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2022. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Reference Citation Analysis]
59 Tat T, Chen G, Zhao X, Zhou Y, Xu J, Chen J. Smart Textiles for Healthcare and Sustainability. ACS Nano 2022. [PMID: 35969207 DOI: 10.1021/acsnano.2c06287] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
60 Ruckdashel RR, Khadse N, Park JH. Smart E-Textiles: Overview of Components and Outlook. Sensors (Basel) 2022;22:6055. [PMID: 36015815 DOI: 10.3390/s22166055] [Reference Citation Analysis]
61 Dai B, Zhou Y, Xiao X, Chen Y, Guo J, Gao C, Xie Y, Chen J. Fluid Field Modulation in Mass Transfer for Efficient Photocatalysis. Adv Sci (Weinh) 2022;:e2203057. [PMID: 35957518 DOI: 10.1002/advs.202203057] [Reference Citation Analysis]
62 Gong W, Guo Y, Yang W, Wu Z, Xing R, Liu J, Wei W, Zhou J, Guo Y, Li K, Hou C, Li Y, Zhang Q, Dickey MD, Wang H. Scalable and Reconfigurable Green Electronic Textiles with Personalized Comfort Management. ACS Nano 2022. [PMID: 35930746 DOI: 10.1021/acsnano.2c04252] [Reference Citation Analysis]
63 Zhai W, Zhu Z, Sun X, Peng H. Fiber Solar Cells from High Performances Towards Real Applications. Adv Fiber Mater . [DOI: 10.1007/s42765-022-00184-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Jiang W, Li J, Jiang Y, Zhou S, Liu B, Zhou T, Liu C, Che G. A 3D porphyrinic metal-organic framework with fsc topology for efficient visible-light-driven photocatalytic degradation. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116091] [Reference Citation Analysis]
65 Zhang Y, Zhang K, Shi Y, Li Z, Zhao D, Pi Y, Cui Y, Zhou X, Zhang Y, Zhong J. Electromagnetic Energy Harvesters Based on Natural Leaves for Constructing Self-Powered systems. Materials Today Energy 2022. [DOI: 10.1016/j.mtener.2022.101131] [Reference Citation Analysis]
66 Zhou Z, Zhang Q, Zhang Z, Kuang H, Du X, Yang H. Lead-free, high-current output piezoelectric nanogenerators using three-dimensional interdigitated electrodes. Chemical Engineering Journal 2022;442:136241. [DOI: 10.1016/j.cej.2022.136241] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Liu L, Chen J, Liang L, Deng L, Chen G. A PEDOT:PSS Thermoelectric Fiber Generator. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.107678] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Woo HK, Zhou K, Kim S, Manjarrez A, Hoque MJ, Seong T, Cai L. Visibly Transparent and Infrared Reflective Coatings for Personal Thermal Management and Thermal Camouflage. Adv Funct Materials. [DOI: 10.1002/adfm.202201432] [Reference Citation Analysis]
69 Du C, Cao M, Li G, Hu Y, Zhang Y, Liang L, Liu Z, Chen G. Toward Precision Recognition of Complex Hand Motions: Wearable Thermoelectrics by Synergistic 2D Nanostructure Confinement and Controlled Reduction. Adv Funct Materials. [DOI: 10.1002/adfm.202206083] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
70 Zheng C, Chu W, Fang S, Tan J, Wang X, Guo W. Materials for evaporation‐driven hydrovoltaic technology. Interdisciplinary Materials 2022. [DOI: 10.1002/idm2.12033] [Reference Citation Analysis]
71 He W, Liu W, Fu S, Wu H, Shan C, Wang Z, Xi Y, Wang X, Guo H, Liu H, Hu C. Ultrahigh Performance Triboelectric Nanogenerator Enabled by Charge Transmission in Interfacial Lubrication and Potential Decentralization Design. Research 2022;2022:1-11. [DOI: 10.34133/2022/9812865] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Zuo X, Fan T, Qu L, Zhang X, Miao J. Smart multi-responsive aramid aerogel fiber enabled self-powered fabrics. Nano Energy 2022;101:107559. [DOI: 10.1016/j.nanoen.2022.107559] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
73 Pashameah RA, Alshariefhatunh.alsharief HH, Alaysuy O, Alfi, Abumelha HM, Habeebullah TM, El-metwaly NM. Cotton fabrics treated with acylhydrazone-based polyviologen to create innovative multi-stimulus responsive textiles. Arabian Journal of Chemistry 2022. [DOI: 10.1016/j.arabjc.2022.104077] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Sarasini F, Tirillò J, Lilli M, Bracciale MP, Vullum PE, Berto F, De Bellis G, Tamburrano A, Cavoto G, Pandolfi F, Rago I. Highly aligned growth of carbon nanotube forests with in-situ catalyst generation: A route to multifunctional basalt fibres. Composites Part B: Engineering 2022. [DOI: 10.1016/j.compositesb.2022.110136] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Chang A, Uy C, Xiao X, Xiao X, Chen J. Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy 2022;98:107282. [DOI: 10.1016/j.nanoen.2022.107282] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
76 Cheng R, Ning C, Chen P, Sheng F, Wei C, Zhang Y, Peng X, Dong K, Wang ZL. Enhanced Output of On‐Body Direct‐Current Power Textiles by Efficient Energy Management for Sustainable Working of Mobile Electronics. Advanced Energy Materials. [DOI: 10.1002/aenm.202201532] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
77 Guo R, Fang Y, Wang Z, Libanori A, Xiao X, Wan D, Cui X, Sang S, Zhang W, Zhang H, Chen J. Deep Learning Assisted Body Area Triboelectric Hydrogel Sensor Network for Infant Care. Adv Funct Materials. [DOI: 10.1002/adfm.202204803] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
78 Hwang S, Kang M, Lee A, Bae S, Lee S, Lee SH, Lee T, Wang G, Kim T. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-30894-4] [Reference Citation Analysis]
79 Zhao K, Lv H, Meng J, Song Z, Meng C, Liu M, Zhang D. Triboelectrification-Induced Electricity in Self-Healing Hydrogel for Mechanical Energy Harvesting and Ultra-sensitive Pressure Monitoring. ACS Omega 2022;7:18816-25. [PMID: 35694505 DOI: 10.1021/acsomega.2c01743] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
80 Fang Y, Xu J, Xiao X, Zou Y, Zhao X, Zhou Y, Chen J. A Deep-Learning-Assisted On-Mask Sensor Network for Adaptive Respiratory Monitoring. Adv Mater 2022;:e2200252. [PMID: 35306703 DOI: 10.1002/adma.202200252] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
81 Wang Q, Chen Y, Jiang X, Qiao X, Wang Y, Zhao H, Pu B, Yang W. Self-assembly defect-regulating superstructured carbon. Energy Storage Materials 2022;48:164-71. [DOI: 10.1016/j.ensm.2022.03.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
82 Tourchi Moghadam MT, Seifi M, Askari MB, Azizi S. ZnO-MWCNT @ Fe3O4 as a novel catalyst for methanol and ethanol oxidation. Journal of Physics and Chemistry of Solids 2022;165:110688. [DOI: 10.1016/j.jpcs.2022.110688] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
83 Chen X, Wang P, Feng Z, Liu Y, Cui M, Meng C, Zhang Y. Structural regulation of vanadium oxide by poly(3,4-ethylenedioxithiophene) intercalation for ammonium-ion supercapacitors. Advanced Sensor and Energy Materials 2022;1:100013. [DOI: 10.1016/j.asems.2022.100013] [Reference Citation Analysis]
84 Yang J, An J, Sun Y, Zhang J, Zu L, Li H, Jiang T, Chen B, Wang ZL. Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety. Nano Energy 2022;97:107199. [DOI: 10.1016/j.nanoen.2022.107199] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
85 Al-qahtani SD, Alkhamis K, Alfi AA, Alhasani M, El-morsy MHE, Sedayo AA, El-metwaly NM. Simple Preparation of Multifunctional Luminescent Textile for Smart Packaging. ACS Omega 2022;7:19454-64. [DOI: 10.1021/acsomega.2c01161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
86 Heo D, Song M, Chung S, Cha K, Kim Y, Chung J, Hwang PT, Lee J, Jung H, Jin Y, Hong J, Kim M, Lee S. Inhalation‐Driven Vertical Flutter Triboelectric Nanogenerator with Amplified Output as a Gas‐Mask‐Integrated Self‐Powered Multifunctional System. Advanced Energy Materials. [DOI: 10.1002/aenm.202201001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Wang L, Fei Z, Qi Y, Zhang C, Zhao L, Jiang Z, Maeda R. Overview of Human Kinetic Energy Harvesting and Application. ACS Appl Energy Mater . [DOI: 10.1021/acsaem.2c00703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Wang B, Peng J, Yang K, Cheng H, Yin Y, Wang C. Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities. ACS Appl Mater Interfaces 2022;14:22497-509. [PMID: 35522598 DOI: 10.1021/acsami.2c06701] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Yang J, Zhou Y, Yang L, Feng C, Bai L, Yang M, Yang W. Exploring Next‐Generation Functional Organic Phase Change Composites. Adv Funct Materials. [DOI: 10.1002/adfm.202200792] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
90 Lu Y, Mi Y, Wu T, Cao X, Wang N. From Triboelectric Nanogenerator to Polymer-Based Biosensor: A Review. Biosensors 2022;12:323. [DOI: 10.3390/bios12050323] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
91 Xiong T, He B, Zhou T, Wang Z, Wang Z, Xin J, Zhang H, Zhou X, Liu Y, Wei L. Stretchable fiber‐shaped aqueous aluminum ion batteries. EcoMat. [DOI: 10.1002/eom2.12218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Chen J, Li Y, Zhang Y, Ye D, Lei C, Wu K, Fu Q. Knittable Composite Fiber Allows Constant and Tremendous Self‐Powering Based on the Transpiration‐Driven Electrokinetic Effect. Adv Funct Materials. [DOI: 10.1002/adfm.202203666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
93 Dong W, Xiao H, Jia Y, Chen L, Geng H, Bakhtiar SUH, Fu Q, Guo Y. Engineering the Defects and Microstructures in Ferroelectrics for Enhanced/Novel Properties: An Emerging Way to Cope with Energy Crisis and Environmental Pollution. Adv Sci (Weinh) 2022;9:e2105368. [PMID: 35240724 DOI: 10.1002/advs.202105368] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
94 Jin Z, Zhao F, Lei Y, Wang Y. Hydrogel-based triboelectric devices for energy-harvesting and wearable sensing applications. Nano Energy 2022;95:106988. [DOI: 10.1016/j.nanoen.2022.106988] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
95 Ginnaram S, Chen Y, Lai Y. Solid-state intrinsically-superstretchable multifunctional nanogenerator fiber for biomechanical and ambient electromagnetic energy harvesting and self-powered sensing. Nano Energy 2022;95:107035. [DOI: 10.1016/j.nanoen.2022.107035] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
96 Xiao X, Yin J, Chen G, Shen S, Nashalian A, Chen J. Bioinspired acoustic textiles with nanoscale vibrations for wearable biomonitoring. Matter 2022;5:1342-5. [DOI: 10.1016/j.matt.2022.03.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
97 Zhang Y, Li Y, Li K, Kwon YS, Tennakoon T, Wang C, Chan KC, Fu S, Huang B, Chao CY. A large-area versatile textile for radiative warming and biomechanical energy harvesting. Nano Energy 2022;95:106996. [DOI: 10.1016/j.nanoen.2022.106996] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
98 Zhang Y, Hu Y, Li Z, Deng L, Chen G. Decoupling the trade-off between thermoelectric and mechanical performances for polymer composites via interfacial regulation. Composites Science and Technology 2022;222:109373. [DOI: 10.1016/j.compscitech.2022.109373] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
99 Wang X, Liu Y, Cheng H, Ouyang X. Surface Wettability for Skin‐Interfaced Sensors and Devices. Adv Funct Materials. [DOI: 10.1002/adfm.202200260] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
100 Long L, Che X, Yao P, Zhang X, Wang J, Li M, Li C. Interfacial Electrochemical Polymerization for Spinning Liquid Metals into Core-Shell Wires. ACS Appl Mater Interfaces 2022;14:18690-6. [PMID: 35420779 DOI: 10.1021/acsami.2c02247] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Wu X, Sun S, Yu X, Zhu X, Xu M, Wu G, Xu J. Review on Microfluidic Construction of Advanced Nanomaterials for High-Performance Energy Storage Applications. Energy Fuels 2022;36:4708-27. [DOI: 10.1021/acs.energyfuels.2c00576] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
102 Scheffler S, Poulin P. Piezoelectric Fibers: Processing and Challenges. ACS Appl Mater Interfaces 2022;14:16961-82. [PMID: 35404561 DOI: 10.1021/acsami.1c24611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
103 Wu S. An Overview of Hierarchical Design of Textile-Based Sensor in Wearable Electronics. Crystals 2022;12:555. [DOI: 10.3390/cryst12040555] [Reference Citation Analysis]
104 Manchi P, Graham SA, Patnam H, Paranjape MV, Yu JS. High-Efficiency Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Loaded 3D Marigold Flower-Like Bismuth Tungstate Triboelectric Films for Mechanical Energy Harvesting and Sensing Applications. Small 2022;:e2200822. [PMID: 35419981 DOI: 10.1002/smll.202200822] [Reference Citation Analysis]
105 Hong C, Wang J, Wang Y, Huang Z, Yang H, Yang D, Cai R, Tan W. Fluorescence detection of milk allergen β-lactoglobulin based on aptamers and WS2 nanosheets. J Mater Chem B 2022. [PMID: 35403657 DOI: 10.1039/d2tb00263a] [Reference Citation Analysis]
106 Liu Y, Zhou X, Yan H, Zhu Z, Shi X, Peng Y, Chen L, Chen P, Peng H. Robust Memristive Fiber for Woven Textile Memristor. Adv Funct Materials. [DOI: 10.1002/adfm.202201510] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
107 Peng X, Zhang X, Wang R, Chen Y, Chu X, Kong L, Yan X, Kuang M. Printing of Carbon Nanotube-Based Temperature and Bending Sensors for High-Temperature-Resistant Intelligent Textiles. ACS Appl Electron Mater 2022;4:1949-57. [DOI: 10.1021/acsaelm.2c00133] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Kundrat V, Vykoukal V, Moravec Z, Simonikova L, Novotny K, Pinkas J. Preparation of polycrystalline tungsten nanofibers by needleless electrospinning. Journal of Alloys and Compounds 2022;900:163542. [DOI: 10.1016/j.jallcom.2021.163542] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
109 Li J, Zhou G, Hong Y, He W, Wang S, Chen Y, Wang C, Tang Y, Sun Y, Zhu Y. Highly sensitive, flexible and wearable piezoelectric motion sensor based on PT promoted β-phase PVDF. Sensors and Actuators A: Physical 2022;337:113415. [DOI: 10.1016/j.sna.2022.113415] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
110 Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022. [PMID: 35352069 DOI: 10.1039/d1cs00858g] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
111 Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron 2022;5:142-56. [DOI: 10.1038/s41928-022-00723-z] [Cited by in Crossref: 51] [Cited by in F6Publishing: 65] [Article Influence: 51.0] [Reference Citation Analysis]
112 Ying B, Zuo R, Wan Y, Liu X. An Ionic Hydrogel-Based Antifreezing Triboelectric Nanogenerator. ACS Appl Electron Mater 2022;4:1930-8. [DOI: 10.1021/acsaelm.2c00118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Ye C, Yang S, Ren J, Dong S, Cao L, Pei Y, Ling S. Electroassisted Core-Spun Triboelectric Nanogenerator Fabrics for IntelliSense and Artificial Intelligence Perception. ACS Nano 2022;16:4415-25. [PMID: 35238534 DOI: 10.1021/acsnano.1c10680] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
114 Li L, Liu W, Liu Q, Chen Z. Multifunctional Wearable Thermoelectrics for Personal Thermal Management. Adv Funct Materials 2022;32:2200548. [DOI: 10.1002/adfm.202200548] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 20.0] [Reference Citation Analysis]
115 Zhou D, Zhang H, Zheng H, Xu Z, Xu H, Guo H, Li P, Tong Y, Hu B, Chen L. Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. Small. [DOI: 10.1002/smll.202200679] [Reference Citation Analysis]
116 Javaid U, Iqbal J, Mehmood A, Uppal AA. Performance improvement in polymer electrolytic membrane fuel cell based on nonlinear control strategies-A comprehensive study. PLoS One 2022;17:e0264205. [PMID: 35213612 DOI: 10.1371/journal.pone.0264205] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
117 Progress and Perspectives. Integrated Smart Micro‐Systems Towards Personalized Healthcare 2022. [DOI: 10.1002/9783527833474.ch7] [Reference Citation Analysis]
118 Senthil R. Recent innovations in solar energy education and research towards sustainable energy development. Acta Innovations 2022. [DOI: 10.32933/actainnovations.42.3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
119 Yan W, Noel G, Loke G, Meiklejohn E, Khudiyev T, Marion J, Rui G, Lin J, Cherston J, Sahasrabudhe A, Wilbert J, Wicaksono I, Hoyt RW, Missakian A, Zhu L, Ma C, Joannopoulos J, Fink Y. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 2022;603:616-23. [PMID: 35296860 DOI: 10.1038/s41586-022-04476-9] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 25.0] [Reference Citation Analysis]
120 Han Q, Jiang Z, Xu X, Ding Z, Chu F. Self-powered fault diagnosis of rolling bearings based on triboelectric effect. Mechanical Systems and Signal Processing 2022;166:108382. [DOI: 10.1016/j.ymssp.2021.108382] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
121 Liu H, Wang C, Chen G, Liao Y, Mao M, Cheng T, Libanori A, Xiao X, Hu X, Liu K, Chen J. Moisture assisted photo-engineered textiles for visible and self-adaptive infrared dual camouflage. Nano Energy 2022;93:106855. [DOI: 10.1016/j.nanoen.2021.106855] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
122 Zhu W, Zhou H, Wei P, Sun C, He D, Nie X, Sang X, Zhao W, Zhang Q. High-throughput optimization and fabrication of Bi2Te2.7Se0.3-based artificially tilted multilayer thermoelectric devices. Journal of the European Ceramic Society 2022. [DOI: 10.1016/j.jeurceramsoc.2022.03.034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Feng M, Wu Y, Feng Y, Dong Y, Liu Y, Peng J, Wang N, Xu S, Wang D. Highly wearable, machine-washable, and self-cleaning fabric-based triboelectric nanogenerator for wireless drowning sensors. Nano Energy 2022;93:106835. [DOI: 10.1016/j.nanoen.2021.106835] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
124 Son J, Heo D, Song Y, Chung J, Kim B, Nam W, Hwang PT, Kim D, Koo B, Hong J, Lee S. Highly reliable triboelectric bicycle tire as self-powered bicycle safety light and pressure sensor. Nano Energy 2022;93:106797. [DOI: 10.1016/j.nanoen.2021.106797] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
125 Ahmed A, Sharma S, Adak B, Hossain MM, Lachance AM, Mukhopadhyay S, Sun L. Two‐dimensional MXenes : New frontier of wearable and flexible electronics. InfoMat. [DOI: 10.1002/inf2.12295] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
126 Uddin MM, Yadavalli NS, Nguyen TD, Minko S, Sharma S. Melt coated flexible stainless-steel thread based co-axial triboelectric yarn nanogenerators. Materials Technology. [DOI: 10.1080/10667857.2022.2038769] [Reference Citation Analysis]
127 Xu L, Du K, Liu Y, Xie K, Tang H, Zhang C. The fabrication and properties of a flexible sensor based on polyvinylidene fluoride fiber. Textile Research Journal. [DOI: 10.1177/00405175221076034] [Reference Citation Analysis]
128 Jiang Y, Zhang Y, Ning C, Ji Q, Peng X, Dong K, Wang ZL. Ultrathin Eardrum-Inspired Self-Powered Acoustic Sensor for Vocal Synchronization Recognition with the Assistance of Machine Learning. Small 2022;:e2106960. [PMID: 35122473 DOI: 10.1002/smll.202106960] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
129 Zhao X, Wang Z, Liu Z, Yao S, Zhang J, Zhang Z, Huang T, Zheng L, Wang ZL, Li L. Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.107067] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
130 Wu R, Ma L, Liu XY. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. Adv Sci (Weinh) 2022;9:e2103981. [PMID: 34802200 DOI: 10.1002/advs.202103981] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
131 Zhang H, He R, Niu Y, Han F, Li J, Zhang X, Xu F. Graphene-enabled wearable sensors for healthcare monitoring. Biosens Bioelectron 2022;197:113777. [PMID: 34781177 DOI: 10.1016/j.bios.2021.113777] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
132 Li L, Zhang Q, He B, Pan R, Wang Z, Chen M, Wang Z, Yin K, Yao Y, Wei L, Sun L. Advanced Multifunctional Aqueous Rechargeable Batteries Design: From Materials and Devices to Systems. Adv Mater 2022;34:e2104327. [PMID: 34693565 DOI: 10.1002/adma.202104327] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
133 Aseena S, Abraham N, Sahaya Dennish Babu G, Kathiresan S, Suresh Babu V. Solution-Synthesized Cu2O As a Hole Transport Layer for a ZnO-Based Planar Heterojunction Perovskite Solar Cell Fabricated at Room Temperature. J Electron Mater . [DOI: 10.1007/s11664-022-09442-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Meng X, Li Q, Hu Z, Guo M. Microfluidic fabrication of β‐phase enriched poly(vinylidene fluoride) microfibers toward flexible piezoelectric sensor. Journal of Polymer Science. [DOI: 10.1002/pol.20210952] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Zhang C, Yuan W, Zhang B, Yang O, Liu Y, He L, Wang J, Wang ZL. High Space Efficiency Hybrid Nanogenerators for Effective Water Wave Energy Harvesting. Adv Funct Materials 2022;32:2111775. [DOI: 10.1002/adfm.202111775] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
136 Kim D, Chung J, Heo D, Chung S, Lee G, Hwang PTJ, Kim M, Jung H, Jin Y, Hong J, Lee S. AC/DC Convertible Pillar‐Type Triboelectric Nanogenerator with Output Current Amplified by the Design of the Moving Electrode. Advanced Energy Materials. [DOI: 10.1002/aenm.202103571] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
137 Podsiadły B, Walter P, Kamiński M, Skalski A, Słoma M. Electrically Conductive Nanocomposite Fibers for Flexible and Structural Electronics. Applied Sciences 2022;12:941. [DOI: 10.3390/app12030941] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
138 Kao FC, Ho HH, Chiu PY, Hsieh MK, Liao JC, Lai PL, Huang YF, Dong MY, Tsai TT, Lin ZH. Self-assisted wound healing using piezoelectric and triboelectric nanogenerators. Sci Technol Adv Mater 2022;23:1-16. [PMID: 35023999 DOI: 10.1080/14686996.2021.2015249] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
139 Vijayakanth T, Liptrot DJ, Gazit E, Boomishankar R, Bowen CR. Recent Advances in Organic and Organic–Inorganic Hybrid Materials for Piezoelectric Mechanical Energy Harvesting. Adv Funct Materials 2022;32:2109492. [DOI: 10.1002/adfm.202109492] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
140 Wang S, Xu Q, Sun H. Functionalization of Fiber Devices: Materials, Preparations and Applications. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00120-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
141 Li H, Wang X, Liang Y, Fei Y, Zhang H. Effect of Electrical Contact Mode on the Arc-Erosion Behavior of Titanium Diboride-Nickel Co-reinforced and Nickel-Enhanced Silver-Based Electrical Contact Materials. J Electron Mater 2022;51:1137-47. [DOI: 10.1007/s11664-021-09375-9] [Reference Citation Analysis]
142 Sun W, Yang D, Luo N, Li H, Wang D. Influence of surface functionalization on the contact electrification of fabrics. New J Chem . [DOI: 10.1039/d2nj02833f] [Reference Citation Analysis]
143 Khatua DK, Kim S. Perspective on the development of high performance flexible piezoelectric energy harvesters. J Mater Chem C. [DOI: 10.1039/d1tc06089a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
144 Zan G, Wu T, Zhang Z, Li J, Zhou J, Zhu F, Chen H, Wen M, Yang X, Peng X, Chen J, Wu Q. Bioinspired Nanocomposites with Self-Adaptive Stress Dispersion for Super-Foldable Electrodes. Adv Sci (Weinh) 2022;9:e2103714. [PMID: 34791832 DOI: 10.1002/advs.202103714] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 25.0] [Reference Citation Analysis]
145 Wu Z, Zhang S, Liu Z, Mu E, Hu Z. Thermoelectric converter: Strategies from materials to device application. Nano Energy 2022;91:106692. [DOI: 10.1016/j.nanoen.2021.106692] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 24.0] [Reference Citation Analysis]
146 Yin L, Kim KN, Trifonov A, Podhajny T, Wang J. Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy Environ Sci 2022;15:82-101. [DOI: 10.1039/d1ee03113a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
147 Zhang W, Miao J, Zuo X, Zhang X, Qu L. Weaving a magnificent world: 1D fibrous electrodes and devices for stretchable and wearable electronics. J Mater Chem C. [DOI: 10.1039/d2tc02524h] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
148 Deng W, Libanori A, Xiao X, Fang J, Zhao X, Zhou Y, Chen G, Li S, Chen J. Computational investigation of ultrasound induced electricity generation via a triboelectric nanogenerator. Nano Energy 2022;91:106656. [DOI: 10.1016/j.nanoen.2021.106656] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
149 Ahmed RFSM, Mohan SB, Ankanathappa SM, Ravindranath MB, Sannathammegowda K. Effect of humidity on the performance of polyvinyl chloride based triboelectric nanogenerator. Materials Today: Proceedings 2022;66:2468-2473. [DOI: 10.1016/j.matpr.2022.06.396] [Reference Citation Analysis]
150 Ramalho JF, Carneiro Neto AN, Carlos LD, André PS, Ferreira RA. Lanthanides for the new generation of optical sensing and Internet of Things. Including Actinides 2022. [DOI: 10.1016/bs.hpcre.2021.12.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
151 El-said WA, Akhtar N, Kamal MM. Fabrication of functionalized nanomaterial-based electrochemical sensors’ platforms. Functionalized Nanomaterial-Based Electrochemical Sensors 2022. [DOI: 10.1016/b978-0-12-823788-5.00008-9] [Reference Citation Analysis]
152 Akbar Shah M, Masood Pirzada B, Price G, L.shibiru A, Qurashi A. Applications of Nanotechnology in Smart Textile Industry: A Critical Review. Journal of Advanced Research 2022. [DOI: 10.1016/j.jare.2022.01.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
153 Tat T, Chen K, Nashalian A, Chen J. Wearable physical sensors. Wearable Physical, Chemical and Biological Sensors 2022. [DOI: 10.1016/b978-0-12-821661-3.00004-5] [Reference Citation Analysis]
154 Li X, Xiao X, Bai C, Mayer M, Cui X, Lin K, Li Y, Zhang H, Chen J. Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. J Mater Chem C. [DOI: 10.1039/d2tc00889k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
155 Sun T, Wang L, Jiang W. Stretchable thermoelectric materials/devices for low-grade thermal energy harvesting. Low-Grade Thermal Energy Harvesting 2022. [DOI: 10.1016/b978-0-12-823690-1.00006-x] [Reference Citation Analysis]
156 Cui X, Wu H, Wang R. Fibrous triboelectric nanogenerators: fabrication, integration, and application. J Mater Chem A. [DOI: 10.1039/d2ta03813g] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
157 Xiao X, Fang Y, Xiao X, Xu J, Chen J. Machine-Learning-Aided Self-Powered Assistive Physical Therapy Devices. ACS Nano 2021;15:18633-46. [PMID: 34913696 DOI: 10.1021/acsnano.1c10676] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 21.0] [Reference Citation Analysis]
158 Guo X, He T, Zhang Z, Luo A, Wang F, Ng EJ, Zhu Y, Liu H, Lee C. Artificial Intelligence-Enabled Caregiving Walking Stick Powered by Ultra-Low-Frequency Human Motion. ACS Nano 2021;15:19054-69. [PMID: 34308631 DOI: 10.1021/acsnano.1c04464] [Cited by in Crossref: 34] [Cited by in F6Publishing: 42] [Article Influence: 34.0] [Reference Citation Analysis]
159 Chen G, Zhou Y, Fang Y, Zhao X, Shen S, Tat T, Nashalian A, Chen J. Wearable Ultrahigh Current Power Source Based on Giant Magnetoelastic Effect in Soft Elastomer System. ACS Nano 2021;15:20582-9. [PMID: 34817978 DOI: 10.1021/acsnano.1c09274] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 17.0] [Reference Citation Analysis]
160 Zheng Y, Omar R, Hu Z, Duong T, Wang J, Haick H. Bioinspired Triboelectric Nanosensors for Self-Powered Wearable Applications. ACS Biomater Sci Eng 2021. [PMID: 34961316 DOI: 10.1021/acsbiomaterials.1c01106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
161 Wang C, Shirzaei Sani E, Gao W. Wearable Bioelectronics for Chronic Wound Management. Adv Funct Materials 2022;32:2111022. [DOI: 10.1002/adfm.202111022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
162 Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic Textiles for Wearable Point-of-Care Systems. Chem Rev 2021. [PMID: 34939791 DOI: 10.1021/acs.chemrev.1c00502] [Cited by in Crossref: 67] [Cited by in F6Publishing: 86] [Article Influence: 67.0] [Reference Citation Analysis]
163 Qureshi S, Stojanović GM, Simić M, Jeoti V, Lashari N, Sher F. Silver Conductive Threads-Based Embroidered Electrodes on Textiles as Moisture Sensors for Fluid Detection in Biomedical Applications. Materials (Basel) 2021;14:7813. [PMID: 34947407 DOI: 10.3390/ma14247813] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
164 Dai J, Li L, Shi B, Li Z. Recent progress of self-powered respiration monitoring systems. Biosens Bioelectron 2021;194:113609. [PMID: 34509719 DOI: 10.1016/j.bios.2021.113609] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
165 Pan Y, Qin Z, Kheiri S, Ying B, Pan P, Peng R, Liu X. Optical Printing of Conductive Silver on Ultrasmooth Nanocellulose Paper for Flexible Electronics. Adv Eng Mater. [DOI: 10.1002/adem.202101598] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
166 Huang J, Zeng J, Zhang X, Guo G, Liu R, Yan Z, Yin Y. Fatigue Resistant Aerogel/Hydrogel Nanostructured Hybrid for Highly Sensitive and Ultrabroad Pressure Sensing. Small 2021;:e2104706. [PMID: 34873837 DOI: 10.1002/smll.202104706] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
167 Chen Y, Li W, Chen C, Tai H, Xie G, Jiang Y, Su Y. Perspectives on self-powered respiration sensor based on triboelectric nanogenerator. Appl Phys Lett 2021;119:230504. [DOI: 10.1063/5.0071608] [Reference Citation Analysis]
168 Xiao X, Xiao X, Zhou Y, Zhao X, Chen G, Liu Z, Wang Z, Lu C, Hu M, Nashalian A, Shen S, Xie K, Yang W, Gong Y, Ding W, Servati P, Han C, Dou SX, Li W, Chen J. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci Adv 2021;7:eabl3742. [PMID: 34851669 DOI: 10.1126/sciadv.abl3742] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 46.0] [Reference Citation Analysis]
169 Chen Z, Lv H, Zhang Q, Wang H, Chen G. Construction of a cement–rebar nanoarchitecture for a solution‐processed and flexible film of a Bi 2 Te 3 /CNT hybrid toward low thermal conductivity and high thermoelectric performance. Carbon Energy 2022;4:115-28. [DOI: 10.1002/cey2.161] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
170 Chen M, Liu J, Wang X, Shao L, Yuan Z, Qian X, Wang Y, Ding A, Tian Y. Ultrafine Transition Metal Phosphide Nanoparticles Semiembedded in Nitrogen-Doped Carbon Nanotubes for Efficient Counter Electrode Materials in Dye-Sensitized Solar Cells. ACS Appl Energy Mater 2021;4:13952-62. [DOI: 10.1021/acsaem.1c02765] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
171 Li X, Feng Q, Wu D, Mensah A, Li W, Cai Y, Li D, Wei Q. A stretchable electrode for single enzymatic biofuel cells. Materials Today Energy 2021;22:100886. [DOI: 10.1016/j.mtener.2021.100886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
172 Yun J, Kim I, Kim D. Hybrid energy harvesting system based on Stirling engine towards next-generation heat recovery system in industrial fields. Nano Energy 2021;90:106508. [DOI: 10.1016/j.nanoen.2021.106508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
173 Zhao K, Cao X, Alsaid Y, Cheng J, Wang Y, Zhao Y, He X, Zhang S, Niu W. Interactively mechanochromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics. Chemical Engineering Journal 2021;426:130870. [DOI: 10.1016/j.cej.2021.130870] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
174 Wang X, Liang L, Lv H, Zhang Y, Chen G. Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 2021;90:106577. [DOI: 10.1016/j.nanoen.2021.106577] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 23.0] [Reference Citation Analysis]
175 Sheng M, Wang W, Li L, Zhang L, Fu S. All-in-one wearable electronics design: Smart electrochromic liquid-crystal-clad fibers without external electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;630:127535. [DOI: 10.1016/j.colsurfa.2021.127535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
176 Ahmed SI, Heiba ZK, Ibrahim MM, Shaltout AA, Alzahrani E, Wahba HH, Alsubaie MF. Synthesis and Characterization of Eco-Friendly CMC/Maghemite Nanocomposite Films. J Electron Mater 2021;50:7098-109. [DOI: 10.1007/s11664-021-09237-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
177 Gao X, Xing F, Guo F, Yang Y, Hao Y, Chen J, Chen B, Wang ZL. A turbine disk-type triboelectric nanogenerator for wind energy harvesting and self-powered wildfire pre-warning. Materials Today Energy 2021;22:100867. [DOI: 10.1016/j.mtener.2021.100867] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
178 Rousti AM, Maji T, Drew C, Kumar J, Christodouleas DC. High-performance thermoelectric fabric based on PEDOT:Tosylate/CuI. Applied Materials Today 2021;25:101180. [DOI: 10.1016/j.apmt.2021.101180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
179 Wei Q, Chen G, Pan H, Ye Z, Au C, Chen C, Zhao X, Zhou Y, Xiao X, Tai H, Jiang Y, Xie G, Su Y, Chen J. MXene‐Sponge Based High‐Performance Piezoresistive Sensor for Wearable Biomonitoring and Real‐Time Tactile Sensing. Small Methods. [DOI: 10.1002/smtd.202101051] [Cited by in Crossref: 17] [Cited by in F6Publishing: 24] [Article Influence: 17.0] [Reference Citation Analysis]
180 Liu H, Zhong X, He X, Li Y, Zhou N, Ma Z, Zhu D, Ji H. Stretchable Conductive Fabric Enabled By Surface Functionalization of Commercial Knitted Cloth. ACS Appl Mater Interfaces 2021;13:55656-65. [PMID: 34758625 DOI: 10.1021/acsami.1c15268] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
181 Zhao X, Zhou Y, Xu J, Chen G, Fang Y, Tat T, Xiao X, Song Y, Li S, Chen J. Soft fibers with magnetoelasticity for wearable electronics. Nat Commun 2021;12:6755. [PMID: 34799591 DOI: 10.1038/s41467-021-27066-1] [Cited by in Crossref: 41] [Cited by in F6Publishing: 52] [Article Influence: 41.0] [Reference Citation Analysis]
182 Zhou J, Wang H, Du C, Zhang D, Lin H, Chen Y, Xiong J. Cellulose for Sustainable Triboelectric Nanogenerators. Adv Energy and Sustain Res 2022;3:2100161. [DOI: 10.1002/aesr.202100161] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
183 Farid T, Rafiq MI, Ali A, Tang W. Transforming wood as next‐generation structural and functional materials for a sustainable future. EcoMat 2022;4. [DOI: 10.1002/eom2.12154] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
184 Liu L, Guo X, Liu W, Lee C. Recent Progress in the Energy Harvesting Technology-From Self-Powered Sensors to Self-Sustained IoT, and New Applications. Nanomaterials (Basel) 2021;11:2975. [PMID: 34835739 DOI: 10.3390/nano11112975] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
185 Su Y, Li W, Yuan L, Chen C, Pan H, Xie G, Conta G, Ferrier S, Zhao X, Chen G, Tai H, Jiang Y, Chen J. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021;89:106321. [DOI: 10.1016/j.nanoen.2021.106321] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 75.0] [Reference Citation Analysis]
186 Chen G, Zhao X, Andalib S, Xu J, Zhou Y, Tat T, Lin K, Chen J. Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter 2021;4:3725-40. [DOI: 10.1016/j.matt.2021.09.012] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 32.0] [Reference Citation Analysis]
187 Wang Y, Chu X, Zhu Z, Xiong D, Zhang H, Yang W. Dynamically evolving 2D supramolecular polyaniline nanosheets for long-stability flexible supercapacitors. Chemical Engineering Journal 2021;423:130203. [DOI: 10.1016/j.cej.2021.130203] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 23.0] [Reference Citation Analysis]
188 Wu Y, Qu J, Chu PK, Shin D, Luo Y, Feng S. Hybrid photovoltaic-triboelectric nanogenerators for simultaneously harvesting solar and mechanical energies. Nano Energy 2021;89:106376. [DOI: 10.1016/j.nanoen.2021.106376] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
189 El-Hamshary H, El-Naggar ME, Khattab TA, El-Faham A. Preparation of Multifunctional Plasma Cured Cellulose Fibers Coated with Photo-Induced Nanocomposite toward Self-Cleaning and Antibacterial Textiles. Polymers (Basel) 2021;13:3664. [PMID: 34771221 DOI: 10.3390/polym13213664] [Reference Citation Analysis]
190 Ding T, Zhou Y, Wang X, Zhang C, Li T, Cheng Y, Lu W, He J, Ho GW. All‐Soft and Stretchable Thermogalvanic Gel Fabric for Antideformity Body Heat Harvesting Wearable. Adv Energy Mater 2021;11:2102219. [DOI: 10.1002/aenm.202102219] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
191 Jeong S, Chae JA, Kim HJ, Jung D, Kim YA, Choi E, Kim H. Hierarchical Design of Functional, Fibrous, and Microporous Polymer Monoliths for the Molecular Recognition of Diethylstilbestrol. Anal Chem 2021;93:13513-9. [PMID: 34596384 DOI: 10.1021/acs.analchem.1c02393] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
192 Kagatikar S, Sunil D. Schiff Bases and Their Complexes in Organic Light Emitting Diode Application. J Electron Mater 2021;50:6708-23. [DOI: 10.1007/s11664-021-09197-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
193 Fu C, Xia Z, Hurren C, Nilghaz A, Wang X. Textiles in soft robots: Current progress and future trends. Biosens Bioelectron 2021;196:113690. [PMID: 34653713 DOI: 10.1016/j.bios.2021.113690] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
194 Xu F, Dong S, Liu G, Pan C, Guo ZH, Guo W, Li L, Liu Y, Zhang C, Pu X, Wang ZL. Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy 2021;88:106247. [DOI: 10.1016/j.nanoen.2021.106247] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 27.0] [Reference Citation Analysis]
195 Costa RS, Soares OSG, Vilarinho R, Moreira JA, Pereira MFR, Pereira A, Pereira C. Unveiling the role of oxidative treatments on the electrochemical performance of carbon nanotube-based cotton textile supercapacitors. Carbon Trends 2021;5:100137. [DOI: 10.1016/j.cartre.2021.100137] [Reference Citation Analysis]
196 Karami Z, Youssefi M, Raeissi K, Zhiani M. Effect of the morphology of silver layer on electrical conductivity and electrochemical performance of silver/reduced graphene oxide/cotton fabric composite as a flexible supercapacitor electrode. Journal of Energy Storage 2021;42:103042. [DOI: 10.1016/j.est.2021.103042] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
197 Liu L, Guo X, Lee C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021;88:106304. [DOI: 10.1016/j.nanoen.2021.106304] [Cited by in Crossref: 67] [Cited by in F6Publishing: 77] [Article Influence: 67.0] [Reference Citation Analysis]
198 Cigánek M, Richtár J, Weiter M, Krajčovič J. Organic π‐Conjugated Molecules: From Nature to Artificial Applications. Where are the Boundaries? Isr J Chem . [DOI: 10.1002/ijch.202100061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
199 Xiao X, Xiao X, Nashalian A, Libanori A, Fang Y, Li X, Chen J. Triboelectric Nanogenerators for Self-Powered Wound Healing. Adv Healthc Mater 2021;10:e2100975. [PMID: 34263555 DOI: 10.1002/adhm.202100975] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 21.0] [Reference Citation Analysis]
200 Shen S, Xiao X, Xiao X, Chen J. Triboelectric Nanogenerators for Self-Powered Breath Monitoring. ACS Appl Energy Mater 2022;5:3952-65. [DOI: 10.1021/acsaem.1c02465] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
201 Ge G, Wang Q, Zhang Y, Alshareef HN, Dong X. 3D Printing of Hydrogels for Stretchable Ionotronic Devices. Adv Funct Materials 2021;31:2107437. [DOI: 10.1002/adfm.202107437] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
202 Dolez PI. Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward. Sensors (Basel) 2021;21:6297. [PMID: 34577509 DOI: 10.3390/s21186297] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
203 Shen S, Fu J, Yi J, Ma L, Sheng F, Li C, Wang T, Ning C, Wang H, Dong K, Wang ZL. High-Efficiency Wastewater Purification System Based on Coupled Photoelectric-Catalytic Action Provided by Triboelectric Nanogenerator. Nanomicro Lett 2021;13:194. [PMID: 34519929 DOI: 10.1007/s40820-021-00695-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
204 Wu S, Liu J, Cai J, Zhao J, Duan B, Chen S. Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic acid) nanofiber yarns for advanced nanostructured bio-textiles. Biofabrication 2021;13. [PMID: 34450602 DOI: 10.1088/1758-5090/ac2209] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
205 Zou L, Lan C, Zhang S, Zheng X, Xu Z, Li C, Yang L, Ruan F, Tan SC. Near-Instantaneously Self-Healing Coating toward Stable and Durable Electromagnetic Interference Shielding. Nanomicro Lett 2021;13:190. [PMID: 34498197 DOI: 10.1007/s40820-021-00709-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
206 Liman MLR, Islam MT, Hossain MM. Mapping the Progress in Flexible Electrodes for Wearable Electronic Textiles: Materials, Durability, and Applications. Adv Elect Materials 2022;8:2100578. [DOI: 10.1002/aelm.202100578] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
207 Alhashmi Alamer F, Badawi NM. Fully Flexible, Highly Conductive Threads Based on single walled carbon nanotube (SWCNTs) and poly (3,4 ethylenedioxy thiophene) poly(styrenesulfonate) (PEDOT:PSS). Adv Eng Mater 2021;23:2100448. [DOI: 10.1002/adem.202100448] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
208 Sala de Medeiros M, Goswami D, Chanci D, Moreno C, Martinez RV. Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils. Nano Energy 2021;87:106155. [DOI: 10.1016/j.nanoen.2021.106155] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
209 Su Y, Chen G, Chen C, Gong Q, Xie G, Yao M, Tai H, Jiang Y, Chen J. Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. Adv Mater 2021;33:e2101262. [PMID: 34240473 DOI: 10.1002/adma.202101262] [Cited by in Crossref: 76] [Cited by in F6Publishing: 79] [Article Influence: 76.0] [Reference Citation Analysis]
210 Tu C, Wu JM. Localized surface plasmon resonance coupling with piezophototronic effect for enhancing hydrogen evolution reaction with Au@MoS2 nanoflowers. Nano Energy 2021;87:106131. [DOI: 10.1016/j.nanoen.2021.106131] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 17.0] [Reference Citation Analysis]
211 Qin Y, Zhang Q, Chen G. Organic borate doped carbon nanotube for enhancement of thermoelectric performance. Carbon 2021;182:742-8. [DOI: 10.1016/j.carbon.2021.06.068] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
212 Li X, Tat T, Chen J. Triboelectric nanogenerators for self-powered drug delivery. Trends in Chemistry 2021;3:765-78. [DOI: 10.1016/j.trechm.2021.04.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
213 Wu H, Zhang Y, Kjøniksen A, Zhou X, Zhou X. Wearable Biofuel Cells: Advances from Fabrication to Application. Adv Funct Materials 2021;31:2103976. [DOI: 10.1002/adfm.202103976] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
214 Ben Dali O, von Seggern H, Sessler GM, Pondrom P, Zhukov S, Zhang X, Kupnik M. Ferroelectret energy harvesting with 3D‐printed air‐spaced cantilever design. Nano Select 2022;3:713-22. [DOI: 10.1002/nano.202100210] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
215 Guo X, Liu L, Zhang Z, Gao S, He T, Shi Q, Lee C. Technology evolution from micro-scale energy harvesters to nanogenerators. J Micromech Microeng 2021;31:093002. [DOI: 10.1088/1361-6439/ac168e] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 30.0] [Reference Citation Analysis]
216 Chen H, Wang J, Ning A. Optimization of a Rolling Triboelectric Nanogenerator Based on the Nano-Micro Structure for Ocean Environmental Monitoring. ACS Omega 2021;6:21059-65. [PMID: 34423213 DOI: 10.1021/acsomega.1c02709] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
217 Parandeh S, Etemadi N, Kharaziha M, Chen G, Nashalian A, Xiao X, Chen J. Advances in Triboelectric Nanogenerators for Self‐Powered Regenerative Medicine. Adv Funct Materials 2021;31:2105169. [DOI: 10.1002/adfm.202105169] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
218 Yang Y, Wei X, Zhang N, Zheng J, Chen X, Wen Q, Luo X, Lee CY, Liu X, Zhang X, Chen J, Tao C, Zhang W, Fan X. A non-printed integrated-circuit textile for wireless theranostics. Nat Commun 2021;12:4876. [PMID: 34385436 DOI: 10.1038/s41467-021-25075-8] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 27.0] [Reference Citation Analysis]
219 Xu L, Zhu Z, Sun DW. Bioinspired Nanomodification Strategies: Moving from Chemical-Based Agrosystems to Sustainable Agriculture. ACS Nano 2021. [PMID: 34346204 DOI: 10.1021/acsnano.1c03948] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 18.0] [Reference Citation Analysis]
220 Zhang Z, Jin X, Wan Z, Zhu M, Wu S. A Feasibility Study on Smart Mattresses to Improve Sleep Quality. J Healthc Eng 2021;2021:6127894. [PMID: 34394894 DOI: 10.1155/2021/6127894] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
221 Kang SH, Lee GY, Lim J, Kim SO. CNT-rGO Hydrogel-Integrated Fabric Composite Synthesized via an Interfacial Gelation Process for Wearable Supercapacitor Electrodes. ACS Omega 2021;6:19578-85. [PMID: 34368544 DOI: 10.1021/acsomega.1c02091] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
222 Yu H, Xiang S, Tao H, Xue J, Tao C, Li C, Zhang N, Fan X. Embroidering a Light and Foldable Photovoltaic Gauze Kerchiefs. Energy Tech 2021;9:2100285. [DOI: 10.1002/ente.202100285] [Reference Citation Analysis]
223 Xu S, Shi X, Dargusch M, Di C, Zou J, Chen Z. Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications. Progress in Materials Science 2021;121:100840. [DOI: 10.1016/j.pmatsci.2021.100840] [Cited by in Crossref: 64] [Cited by in F6Publishing: 52] [Article Influence: 64.0] [Reference Citation Analysis]
224 Bahners T, Tsarkova L, Gebert B, Gutmann J. Functionalization of textiles by deposition of UV-cured organic thin layers with charge storage properties for electronic and environmental technology. Progress in Organic Coatings 2021;157:106332. [DOI: 10.1016/j.porgcoat.2021.106332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
225 Sun M, Gu Y, Pei X, Wang J, Liu J, Ma C, Bai J, Zhou M. A flexible and wearable epidermal ethanol biofuel cell for on-body and real-time bioenergy harvesting from human sweat. Nano Energy 2021;86:106061. [DOI: 10.1016/j.nanoen.2021.106061] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 27.0] [Reference Citation Analysis]
226 Zhang L, Han X, Du M, Shi Y, Zhang K. Compliant three-dimensional thermoelectric generator filled with porous PDMS for power generation and solid-state cooling. Composites Communications 2021;26:100793. [DOI: 10.1016/j.coco.2021.100793] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
227 Bai C, Wang Z, Yang S, Cui X, Li X, Yin Y, Zhang M, Wang T, Sang S, Zhang W, Zhang H. Wearable Electronics Based on the Gel Thermogalvanic Electrolyte for Self-Powered Human Health Monitoring. ACS Appl Mater Interfaces 2021;13:37316-22. [PMID: 34328723 DOI: 10.1021/acsami.1c12443] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 23.0] [Reference Citation Analysis]
228 Li Z, Deng L, Lv H, Liang L, Deng W, Zhang Y, Chen G. Mechanically Robust and Flexible Films of Ionic Liquid‐Modulated Polymer Thermoelectric Composites. Adv Funct Mater 2021;31:2104836. [DOI: 10.1002/adfm.202104836] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 20.0] [Reference Citation Analysis]
229 Xu J, Fang Y, Chen J. Wearable Biosensors for Non-Invasive Sweat Diagnostics. Biosensors (Basel) 2021;11:245. [PMID: 34436047 DOI: 10.3390/bios11080245] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 28.0] [Reference Citation Analysis]
230 Fang Y, Chen G, Bick M, Chen J. Smart textiles for personalized thermoregulation. Chem Soc Rev 2021;50:9357-74. [PMID: 34296235 DOI: 10.1039/d1cs00003a] [Cited by in Crossref: 48] [Cited by in F6Publishing: 60] [Article Influence: 48.0] [Reference Citation Analysis]
231 Qi L, Jia YJ, An YC, Zhi XX, Zhang Y, Liu JG, Li JS. Photo-Patternable, High-Speed Electrospun Ultrafine Fibers Fabricated by Intrinsically Negative Photosensitive Polyimide. ACS Omega 2021;6:18458-64. [PMID: 34308077 DOI: 10.1021/acsomega.1c02535] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
232 Wang N, Daniels R, Connelly L, Sotzing M, Wu C, Gerhard R, Sotzing GA, Cao Y. All-Organic Flexible Ferroelectret Nanogenerator with Fabric-Based Electrodes for Self-Powered Body Area Networks. Small 2021;17:e2103161. [PMID: 34270880 DOI: 10.1002/smll.202103161] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
233 Ma Y, Xiong L, Lu Y, Zhu W, Zhao H, Yang Y, Mao L, Yang L. Advanced Inorganic Nitride Nanomaterials for Renewable Energy: A Mini Review of Synthesis Methods. Front Chem 2021;9:638216. [PMID: 34307294 DOI: 10.3389/fchem.2021.638216] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
234 Zhu Q, Yang P, Zhang T, Yu Z, Liu K, Fan HJ. Boosting alkaline water electrolysis by asymmetric temperature modulation. Appl Phys Lett 2021;119:013901. [DOI: 10.1063/5.0054273] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
235 Zhang D, Yang W, Gong W, Ma W, Hou C, Li Y, Zhang Q, Wang H. Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals. Adv Mater 2021;33:e2100782. [PMID: 34028894 DOI: 10.1002/adma.202100782] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 14.0] [Reference Citation Analysis]
236 Chen N, Zhou Y, Zhang S, Huang H, Zhang C(, Zheng X, Chu X, Zhang H, Yang W, Chen J. Tailoring Ti3CNT MXene via an acid molecular scissor. Nano Energy 2021;85:106007. [DOI: 10.1016/j.nanoen.2021.106007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 18.0] [Reference Citation Analysis]
237 Zahra T, Ahmad KS, Zequine C, Thomas AG, Malik MA, Gupta RK, Ali D. Preparation of Organo-Stabilized Mn3O4 Nanostructures as an Electro-Catalyst for Clean Energy Generation. Journal of Elec Materi 2021;50:5150-60. [DOI: 10.1007/s11664-021-09054-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
238 Peng Z, Song J, Gao Y, Liu J, Lee C, Chen G, Wang Z, Chen J, Leung MK. A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting. Nano Energy 2021;85:106021. [DOI: 10.1016/j.nanoen.2021.106021] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 27.0] [Reference Citation Analysis]
239 Ouyang Z, Cui S, Yu H, Xu D, Wang C, Tang D, Tam KC. Versatile sensing devices for self-driven designated therapy based on robust breathable composite films. Nano Res 2022;15:1027-38. [DOI: 10.1007/s12274-021-3591-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
240 Huang J, Wang Q, Wu Z, Ma Z, Yan C, Shi Y, Su B. 3D‐Printed Underwater Super‐Oleophobic Shark Skin toward the Electricity Generation through Low‐Adhesion Sliding of Magnetic Nanofluid Droplets. Adv Funct Mater 2021;31:2103776. [DOI: 10.1002/adfm.202103776] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
241 Ma L, Wu R, Patil A, Yi J, Liu D, Fan X, Sheng F, Zhang Y, Liu S, Shen S, Wang J, Wang ZL. Acid and Alkali‐Resistant Textile Triboelectric Nanogenerator as a Smart Protective Suit for Liquid Energy Harvesting and Self‐Powered Monitoring in High‐Risk Environments. Adv Funct Mater 2021;31:2102963. [DOI: 10.1002/adfm.202102963] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
242 Jiang M, Lu Y, Zhu Z, Jia W. Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Micromachines (Basel) 2021;12:698. [PMID: 34203757 DOI: 10.3390/mi12060698] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
243 Meng J, Guo ZH, Pan C, Wang L, Chang C, Li L, Pu X, Wang ZL. Flexible Textile Direct-Current Generator Based on the Tribovoltaic Effect at Dynamic Metal-Semiconducting Polymer Interfaces. ACS Energy Lett 2021;6:2442-50. [DOI: 10.1021/acsenergylett.1c00288] [Cited by in Crossref: 23] [Cited by in F6Publishing: 30] [Article Influence: 23.0] [Reference Citation Analysis]
244 You A, Zhang X, Peng X, Dong K, Lu Y, Zhang Q. A Skin‐Inspired Triboelectric Nanogenerator with an Interpenetrating Structure for Motion Sensing and Energy Harvesting. Macromol Mater Eng 2021;306:2100147. [DOI: 10.1002/mame.202100147] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
245 Song M, Kang S, Kim J, Kim J. Assembly‐Type Wireless Communication Patch for Miniaturized Flexible Wearable Sensors. Adv Mater Technol 2021;6:2100034. [DOI: 10.1002/admt.202100034] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
246 Khan J, Mariatti M. The Influence of Substrate Functionalization for Enhancing the Interfacial Bonding between Graphene Oxide and Nonwoven Polyester. Fibers Polym 2021;22:3192-202. [DOI: 10.1007/s12221-021-1386-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
247 Wang T, Jia X, Lv C, Ji L, Wei Y, Zhang Z, Gao Y, Wang S. Multifunctional Textiles Based on Three-Dimensional Hierarchically Structured TiO2 Nanowires. ACS Appl Mater Interfaces 2021;13:27557-66. [PMID: 34100290 DOI: 10.1021/acsami.1c04256] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
248 Wang W, Yu A, Zhai J, Wang ZL. Recent Progress of Functional Fiber and Textile Triboelectric Nanogenerators: Towards Electricity Power Generation and Intelligent Sensing. Adv Fiber Mater 2021;3:394-412. [DOI: 10.1007/s42765-021-00077-9] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 26.0] [Reference Citation Analysis]
249 Zhao X, Askari H, Chen J. Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 2021;5:1391-431. [DOI: 10.1016/j.joule.2021.03.013] [Cited by in Crossref: 114] [Cited by in F6Publishing: 126] [Article Influence: 114.0] [Reference Citation Analysis]
250 Casadio S, Sangiorgi N, Sangiorgi A, Dessì A, Zani L, Calamante M, Reginato G, Mordini A, Sanson A. Highly efficient long thin-film fiber-shaped dye sensitized solar cells based on a fully organic sensitizer. Solar Energy Materials and Solar Cells 2021;224:110986. [DOI: 10.1016/j.solmat.2021.110986] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
251 Zhang B, Chun F, Chen G, Yang T, Libanori A, Chen K, Conta G, Xiong D, Yan C, Yang W, Chen J. Water-evaporation-induced intermolecular force for nano-wrinkled polymeric membrane. Cell Reports Physical Science 2021;2:100441. [DOI: 10.1016/j.xcrp.2021.100441] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
252 Liu L, Shi Q, Lee C. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res 2021;14:4227-35. [DOI: 10.1007/s12274-021-3540-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 20.0] [Reference Citation Analysis]
253 Chen Y, Deng Z, Ouyang R, Zheng R, Jiang Z, Bai H, Xue H. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy 2021;84:105866. [DOI: 10.1016/j.nanoen.2021.105866] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 30.0] [Reference Citation Analysis]
254 Zhang L, Shi X, Yang Y, Chen Z. Flexible thermoelectric materials and devices: From materials to applications. Materials Today 2021;46:62-108. [DOI: 10.1016/j.mattod.2021.02.016] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 65.0] [Reference Citation Analysis]
255 Zhang Z, Lu S, Cai R, Tan W. Rapid water-responsive shape memory films for smart resistive bending sensors. Nano Today 2021;38:101202. [DOI: 10.1016/j.nantod.2021.101202] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
256 Liu Y, Liu G, Bu T, Zhang C. Effects of interfacial acid–base on the performance of contact–separation mode triboelectric nanogenerator. Materials Today Energy 2021;20:100686. [DOI: 10.1016/j.mtener.2021.100686] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
257 Chu X, Chen G, Xiao X, Wang Z, Yang T, Xu Z, Huang H, Wang Y, Yan C, Chen N, Zhang H, Yang W, Chen J. Air-Stable Conductive Polymer Ink for Printed Wearable Micro-Supercapacitors. Small 2021;17:e2100956. [PMID: 34018685 DOI: 10.1002/smll.202100956] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 23.0] [Reference Citation Analysis]
258 Buapoon S, Phuruangrat A, Dumrongrojthanath P, Thongtem T, Thongtem S. Sonochemical Synthesis and Characterization of Ag/ZnO Heterostructure Nanocomposites and their Photocatalytic Efficiencies. Journal of Elec Materi 2021;50:4524-32. [DOI: 10.1007/s11664-021-08985-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
259 Khan S, Kim J, Acharya S, Kim W. Review on the operation of wearable sensors through body heat harvesting based on thermoelectric devices. Appl Phys Lett 2021;118:200501. [DOI: 10.1063/5.0049347] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
260 Su X, Jia S, Cao L, Yu D. High performance polylactic acid/thermoplastic polyurethane blends with in‐situ fibrillated morphology. J of Applied Polymer Sci 2021;138:51014. [DOI: 10.1002/app.51014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
261 Ahmad A, Tong H, Fan T, Xu J. Binary polymer blend of ArPTU / PI with advanced comprehensive dielectric properties and ultra‐high thermally stability. J of Applied Polymer Sci 2021;138:50997. [DOI: 10.1002/app.50997] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
262 Xu Q, Fang Y, Jing Q, Hu N, Lin K, Pan Y, Xu L, Gao H, Yuan M, Chu L, Ma Y, Xie Y, Chen J, Wang L. A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosens Bioelectron 2021;187:113329. [PMID: 34020223 DOI: 10.1016/j.bios.2021.113329] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 39.0] [Reference Citation Analysis]
263 Ramalho JFCB, Carlos LD, André PS, Ferreira RAS. mOptical Sensing for the Internet of Things: A Smartphone‐Controlled Platform for Temperature Monitoring. Adv Photo Res 2021;2:2000211. [DOI: 10.1002/adpr.202000211] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
264 Cavinato LM, Fresta E, Ferrara S, Costa RD. Merging Biology and Photovoltaics: How Nature Helps Sun‐Catching. Adv Energy Mater 2021;11:2100520. [DOI: 10.1002/aenm.202100520] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
265 Lv J, Chen J, Lee PS. Sustainable wearable energy storage devices self‐charged by human‐body bioenergy. SusMat 2021;1:285-302. [DOI: 10.1002/sus2.14] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 28.0] [Reference Citation Analysis]
266 Fahad S, Yu H, Wang L, Wang Y, Lin T, Amin BU, Naveed K, Khan RU, Mehmood S, Haq F, Xing Y, Usman M. Synthesis of AgNWs Using High Molecular Weight PVP As a Capping Agent and Their Application in Conductive Thin Films. Journal of Elec Materi 2021;50:2789-99. [DOI: 10.1007/s11664-021-08770-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
267 Yang X, Tat T, Libanori A, Cheng J, Xuan X, Liu N, Yang X, Zhou J, Nashalian A, Chen J. Single-atom catalysts with bimetallic centers for high-performance electrochemical CO2 reduction. Materials Today 2021;45:54-61. [DOI: 10.1016/j.mattod.2021.01.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
268 Li Z, Cui Y, Zhong J. Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring. Biosens Bioelectron 2021;186:113290. [PMID: 33965792 DOI: 10.1016/j.bios.2021.113290] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
269 Jung J, Nam JS, Klyukin K, Youn D, Kim I. Straightforward strategy toward a shape-deformable carbon-free cathode for flexible Li–air batteries in ambient air. Nano Energy 2021;83:105821. [DOI: 10.1016/j.nanoen.2021.105821] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
270 Zou Y, Xu J, Fang Y, Zhao X, Zhou Y, Chen J. A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy 2021;83:105845. [DOI: 10.1016/j.nanoen.2021.105845] [Cited by in Crossref: 51] [Cited by in F6Publishing: 56] [Article Influence: 51.0] [Reference Citation Analysis]
271 Koralli P, Mouzakis DE. Advances in Wearable Chemosensors. Chemosensors 2021;9:99. [DOI: 10.3390/chemosensors9050099] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
272 Mahmoud SA, Fouad OA, Salem AA, Bendary SH. Profound Impact of Zn3(OH)2(V2O7)(H2O)2 and Zn3V2O8–Zn2V2O7 in Dye Sensitized Solar Cells. Journal of Elec Materi 2021;50:4289-302. [DOI: 10.1007/s11664-021-08860-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
273 Gao Y, Liu G, Bu T, Liu Y, Qi Y, Xie Y, Xu S, Deng W, Yang W, Zhang C. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Res 2021;14:4833-40. [DOI: 10.1007/s12274-021-3437-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 24.0] [Reference Citation Analysis]
274 Choi HJ, Kang BC, Ha TJ. Self-reconfigurable high-weight-per-volume-gelatin films for all-solution-processed on-skin electronics with ultra-conformal contact. Biosens Bioelectron 2021;184:113231. [PMID: 33866074 DOI: 10.1016/j.bios.2021.113231] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
275 Busolo T, Szewczyk PK, Nair M, Stachewicz U, Kar-Narayan S. Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications. ACS Appl Mater Interfaces 2021;13:16876-86. [PMID: 33783199 DOI: 10.1021/acsami.1c00983] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
276 Ruckdashel RR, Venkataraman D, Park JH. Smart textiles: A toolkit to fashion the future. Journal of Applied Physics 2021;129:130903. [DOI: 10.1063/5.0024006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
277 Li M, Li Z, Ye X, Zhang X, Qu L, Tian M. Tendril-Inspired 900% Ultrastretching Fiber-Based Zn-Ion Batteries for Wearable Energy Textiles. ACS Appl Mater Interfaces 2021;13:17110-7. [PMID: 33797215 DOI: 10.1021/acsami.1c02329] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
278 Li H, Bowen CR, Yang Y. Scavenging Energy Sources Using Ferroelectric Materials. Adv Funct Mater 2021;31:2100905. [DOI: 10.1002/adfm.202100905] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
279 Fang Y, Zhao X, Tat T, Xiao X, Chen G, Xu J, Chen J. All-in-one conformal epidermal patch for multimodal biosensing. Matter 2021;4:1102-5. [DOI: 10.1016/j.matt.2021.03.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 21.0] [Reference Citation Analysis]
280 Gong W, Wang X, Yang W, Zhou J, Han X, Dickey MD, Su Y, Hou C, Li Y, Zhang Q, Wang H. Wicking-Polarization-Induced Water Cluster Size Effect on Triboelectric Evaporation Textiles. Adv Mater 2021;33:e2007352. [PMID: 33660354 DOI: 10.1002/adma.202007352] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 26.0] [Reference Citation Analysis]
281 Guo H, Wan J, Wang H, Wu H, Xu C, Miao L, Han M, Zhang H. Self-Powered Intelligent Human-Machine Interaction for Handwriting Recognition. Research (Wash D C) 2021;2021:4689869. [PMID: 33880448 DOI: 10.34133/2021/4689869] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
282 Xiao X, Chen G, Libanori A, Chen J. Wearable Triboelectric Nanogenerators for Therapeutics. Trends in Chemistry 2021;3:279-90. [DOI: 10.1016/j.trechm.2021.01.001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 48.0] [Reference Citation Analysis]
283 Balilonda A, Li Q, Bian X, Jose R, Ramakrishna S, Zhu M, Zabihi F, Yang S. Lead-free and electron transport layer-free perovskite yarns: Designed for knitted solar fabrics. Chemical Engineering Journal 2021;410:128384. [DOI: 10.1016/j.cej.2020.128384] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
284 Fang Y, Zhao X, Chen G, Tat T, Chen J. Smart polyethylene textiles for radiative and evaporative cooling. Joule 2021;5:752-4. [DOI: 10.1016/j.joule.2021.03.019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
285 Chen G, Fang Y, Zhao X, Tat T, Chen J. Textiles for learning tactile interactions. Nat Electron 2021;4:175-6. [DOI: 10.1038/s41928-021-00560-6] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 36.0] [Reference Citation Analysis]
286 Li G, Liu G, He W, Long L, Li B, Wang Z, Tang Q, Liu W, Hu C. Miura folding based charge-excitation triboelectric nanogenerator for portable power supply. Nano Res 2021;14:4204-10. [DOI: 10.1007/s12274-021-3401-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
287 Xu S, Libanori A, Luo G, Chen J. Engineering bandgap of CsPbI3 over 1.7 eV with enhanced stability and transport properties. iScience 2021;24:102235. [PMID: 33748717 DOI: 10.1016/j.isci.2021.102235] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
288 Deng W, Deng L, Li Z, Zhang Y, Chen G. Synergistically Boosting Thermoelectric Performance of PEDOT:PSS/SWCNT Composites via the Ion-Exchange Effect and Promoting SWCNT Dispersion by the Ionic Liquid. ACS Appl Mater Interfaces 2021;13:12131-40. [PMID: 33667061 DOI: 10.1021/acsami.1c01059] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 32.0] [Reference Citation Analysis]
289 Song L, Zhang Z, Xun X, Xu L, Gao F, Zhao X, Kang Z, Liao Q, Zhang Y. Fully Organic Self-Powered Electronic Skin with Multifunctional and Highly Robust Sensing Capability. Research (Wash D C) 2021;2021:9801832. [PMID: 33693434 DOI: 10.34133/2021/9801832] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
290 Chung J, Song M, Chung SH, Choi W, Lee S, Lin ZH, Hong J, Lee S. Triangulated Cylinder Origami-Based Piezoelectric/Triboelectric Hybrid Generator to Harvest Coupled Axial and Rotational Motion. Research (Wash D C) 2021;2021:7248579. [PMID: 33693432 DOI: 10.34133/2021/7248579] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
291 Candolfi C, Oualid SE, Ibrahim D, Misra S, Hamouli OE, Léon A, Dauscher A, Masschelein P, Gall P, Gougeon P, Semprimoschnig C, Lenoir B. Thermoelectric materials for space applications. CEAS Space J 2021;13:325-40. [DOI: 10.1007/s12567-021-00351-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
292 Shi X, Zuo Y, Zhai P, Shen J, Yang Y, Gao Z, Liao M, Wu J, Wang J, Xu X, Tong Q, Zhang B, Wang B, Sun X, Zhang L, Pei Q, Jin D, Chen P, Peng H. Large-area display textiles integrated with functional systems. Nature 2021;591:240-5. [PMID: 33692559 DOI: 10.1038/s41586-021-03295-8] [Cited by in Crossref: 218] [Cited by in F6Publishing: 242] [Article Influence: 218.0] [Reference Citation Analysis]
293 Mandal M, Subudhi S, Alam I, Subramanyam B, Patra S, Das S, Raiguru J, Mahapatra A, Mahanandia P. Simple and Cost-Effective Synthesis of Activated Carbon Anchored by Functionalized Multiwalled Carbon Nanotubes for High-Performance Supercapacitor Electrodes with High Energy Density and Power Density. Journal of Elec Materi 2021;50:2879-89. [DOI: 10.1007/s11664-021-08796-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
294 Korkmaz S, Kariper İA. Production and applications of flexible/wearable triboelectric nanogenerator (TENGS). Synthetic Metals 2021;273:116692. [DOI: 10.1016/j.synthmet.2020.116692] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
295 Jiang X, Chen R, Zhu H. Recent progress in wearable tactile sensors combined with algorithms based on machine learning and signal processing. APL Materials 2021;9:030906. [DOI: 10.1063/5.0043842] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
296 Zhang S, Bick M, Xiao X, Chen G, Nashalian A, Chen J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021;4:845-87. [DOI: 10.1016/j.matt.2021.01.006] [Cited by in Crossref: 94] [Cited by in F6Publishing: 76] [Article Influence: 94.0] [Reference Citation Analysis]
297 Wang H, Han M, Song Y, Zhang H. Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy 2021;81:105627. [DOI: 10.1016/j.nanoen.2020.105627] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 39.0] [Reference Citation Analysis]
298 Lu Y, Yan Y, Yu X, Zhou X, Feng S, Xu C, Zheng H, Yang Z, Li L, Liu K, Lin S. Polarized Water Driven Dynamic PN Junction-Based Direct-Current Generator. Research (Wash D C) 2021;2021:7505638. [PMID: 33623921 DOI: 10.34133/2021/7505638] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
299 Xie L, Zhai N, Liu Y, Wen Z, Sun X. Hybrid Triboelectric Nanogenerators: From Energy Complementation to Integration. Research (Wash D C) 2021;2021:9143762. [PMID: 33728411 DOI: 10.34133/2021/9143762] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
300 Kong DS, Han JY, Ko YJ, Park SH, Lee M, Jung JH. A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting. Energies 2021;14:1120. [DOI: 10.3390/en14041120] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
301 Alzahrani HK, Munshi AM, Aldawsari AM, Keshk AA, Asghar BH, Osman HE, Khalifa ME, El‐metwaly NM. Development of photoluminescent, superhydrophobic, and electrically conductive cotton fibres. Luminescence 2021;36:964-76. [DOI: 10.1002/bio.4024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 26.0] [Reference Citation Analysis]
302 Song Y, Mukasa D, Zhang H, Gao W. Self-Powered Wearable Biosensors. Acc Mater Res 2021;2:184-97. [DOI: 10.1021/accountsmr.1c00002] [Cited by in Crossref: 51] [Cited by in F6Publishing: 57] [Article Influence: 51.0] [Reference Citation Analysis]
303 Su Y, Chen C, Pan H, Yang Y, Chen G, Zhao X, Li W, Gong Q, Xie G, Zhou Y, Zhang S, Tai H, Jiang Y, Chen J. Muscle Fibers Inspired High‐Performance Piezoelectric Textiles for Wearable Physiological Monitoring. Adv Funct Mater 2021;31:2010962. [DOI: 10.1002/adfm.202010962] [Cited by in Crossref: 83] [Cited by in F6Publishing: 90] [Article Influence: 83.0] [Reference Citation Analysis]
304 Chen G, Au C, Chen J. Textile Triboelectric Nanogenerators for Wearable Pulse Wave Monitoring. Trends Biotechnol 2021:S0167-7799(21)00005-6. [PMID: 33551177 DOI: 10.1016/j.tibtech.2020.12.011] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 46.0] [Reference Citation Analysis]
305 Xiang S, Zhang N, Fan X. From Fiber to Fabric: Progress Towards Photovoltaic Energy Textile. Adv Fiber Mater 2021;3:76-106. [DOI: 10.1007/s42765-020-00062-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
306 Le C, Vo C, Nguyen T, Vu D, Ahn KK. Liquid-solid contact electrification based on discontinuous-conduction triboelectric nanogenerator induced by radially symmetrical structure. Nano Energy 2021;80:105571. [DOI: 10.1016/j.nanoen.2020.105571] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 18.0] [Reference Citation Analysis]
307 Wang Q, Zhou Y, Zhao X, Chen K, Bingni G, Yang T, Zhang H, Yang W, Chen J. Tailoring carbon nanomaterials via a molecular scissor. Nano Today 2021;36:101033. [DOI: 10.1016/j.nantod.2020.101033] [Cited by in Crossref: 33] [Cited by in F6Publishing: 40] [Article Influence: 33.0] [Reference Citation Analysis]
308 Rashid MM, Simončič B, Tomšič B. Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces 2021;22:100890. [DOI: 10.1016/j.surfin.2020.100890] [Cited by in Crossref: 21] [Cited by in F6Publishing: 30] [Article Influence: 21.0] [Reference Citation Analysis]
309 Han J, Xu N, Liang Y, Ding M, Zhai J, Sun Q, Wang ZL. Paper-based triboelectric nanogenerators and their applications: a review. Beilstein J Nanotechnol 2021;12:151-71. [PMID: 33614382 DOI: 10.3762/bjnano.12.12] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
310 Ryu J, Gao Y, Cho JH, Choi S. Horizontally structured microbial fuel cells in yarns and woven fabrics for wearable bioenergy harvesting. Journal of Power Sources 2021;484:229271. [DOI: 10.1016/j.jpowsour.2020.229271] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
311 Katouah H, El-metwaly NM. Plasma treatment toward electrically conductive and superhydrophobic cotton fibers by in situ preparation of polypyrrole and silver nanoparticles. Reactive and Functional Polymers 2021;159:104810. [DOI: 10.1016/j.reactfunctpolym.2021.104810] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 26.0] [Reference Citation Analysis]
312 Xu X, Liu Y, Fang W, Teng S, Wang J, He F, Wang Y, Yin F, Li J, Li J. Improved thermoelectric properties of doped A0.5B0.5NiSn (A, B = Ti, Zr, Hf) with a special quasirandom structure. J Mater Sci 2021;56:4280-4290. [DOI: 10.1007/s10853-020-05519-0] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
313 Zhu M, Yi Z, Yang B, Lee C. Making use of nanoenergy from human – Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021;36:101016. [DOI: 10.1016/j.nantod.2020.101016] [Cited by in Crossref: 87] [Cited by in F6Publishing: 97] [Article Influence: 87.0] [Reference Citation Analysis]
314 Zhang R, Raveendran V, He Y, Yau A, Chang A, Chi C, Bong S, Cheng F, Ma W, Chen J. A Poriferous Nanoflake-Assembled Flower-Like Ni 5 P 4 Anode for High-Performance Sodium-Ion Batteries. Energy Material Advances 2021;2021:1-9. [DOI: 10.34133/2021/2124862] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
315 Zou Y, Xu J, Chen K, Chen J. Advances in Nanostructures for High‐Performance Triboelectric Nanogenerators. Adv Materials Technologies 2021;6:2000916. [DOI: 10.1002/admt.202000916] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 38.0] [Reference Citation Analysis]
316 Angelucci A, Cavicchioli M, Cintorrino IA, Lauricella G, Rossi C, Strati S, Aliverti A. Smart Textiles and Sensorized Garments for Physiological Monitoring: A Review of Available Solutions and Techniques. Sensors (Basel) 2021;21:814. [PMID: 33530403 DOI: 10.3390/s21030814] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 28.0] [Reference Citation Analysis]
317 Huang X, Deng L, Liu F, Zhang Q, Chen G. Effect of Crystalline Microstructure Evolution on Thermoelectric Performance of PEDOT : PSS Films. Energy Material Advances 2021;2021:1-10. [DOI: 10.34133/2021/1572537] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
318 Ko Y, Lee S, Kwon CH, Lee SW, Cho J. Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage. Adv Energy Mater 2021;11:2002969. [DOI: 10.1002/aenm.202002969] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
319 Cheng R, Dong K, Chen P, Ning C, Peng X, Zhang Y, Liu D, Wang ZL. High output direct-current power fabrics based on the air breakdown effect. Energy Environ Sci 2021;14:2460-71. [DOI: 10.1039/d1ee00059d] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 31.0] [Reference Citation Analysis]
320 Dinis H, Mendes P. A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices. Biosensors and Bioelectronics 2021;172:112781. [DOI: 10.1016/j.bios.2020.112781] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 30.0] [Reference Citation Analysis]
321 Ghosh SK, Mandal D. Design strategy and innovation in piezo- and pyroelectric nanogenerators. Nanobatteries and Nanogenerators 2021. [DOI: 10.1016/b978-0-12-821548-7.00022-1] [Reference Citation Analysis]
322 Pu J, Cao Q, Gao Y, Yang J, Cai D, Chen X, Tang X, Fu G, Pan Z, Guan C. Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility. J Mater Chem A 2021;9:17292-9. [DOI: 10.1039/d1ta05617d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
323 Wu J, Wang X, He J, Li Z, Li L. Synthesis of fluorinated polyimide towards a transparent triboelectric nanogenerator applied on screen surface. J Mater Chem A 2021;9:6583-90. [DOI: 10.1039/d0ta11156b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
324 Shen S, Xiao X, Xiao X, Chen J. Wearable triboelectric nanogenerators for heart rate monitoring. Chem Commun 2021;57:5871-9. [DOI: 10.1039/d1cc02091a] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 31.0] [Reference Citation Analysis]
325 Gao M, Wang P, Jiang L, Wang B, Yao Y, Liu S, Chu D, Cheng W, Lu Y. Power generation for wearable systems. Energy Environ Sci 2021;14:2114-57. [DOI: 10.1039/d0ee03911j] [Cited by in Crossref: 69] [Cited by in F6Publishing: 79] [Article Influence: 69.0] [Reference Citation Analysis]
326 Jadoun S, Verma A, Arif R. Green synthesis of nanomaterials for textile applications. Green Chemistry for Sustainable Textiles 2021. [DOI: 10.1016/b978-0-323-85204-3.00016-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
327 Palencia M, Lerma TA, Garcés V, Mora MA, Martínez JM, Palencia SL. Functional and eco-friendly polymers in textile applications. Eco-friendly Functional Polymers 2021. [DOI: 10.1016/b978-0-12-821842-6.00024-5] [Reference Citation Analysis]
328 Faruk MO, Ahmed A, Adak B, Marzana M, Hossain MM, Mukhopadhyay S. High performance 2D MXene based conducting polymer hybrids: synthesis to emerging applications. J Mater Chem C 2021;9:10193-215. [DOI: 10.1039/d1tc02240g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
329 Cabello-alvarado CJ, Andrade-guel ML, Medellín-banda DI, Melo-lopez L, Ávila-orta CA. Polymer Composites: Smart Synthetic Fibers Approach in Energy and Environmental Care. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications 2021. [DOI: 10.1007/978-3-030-11155-7_146-1] [Reference Citation Analysis]
330 İskenderoğlu FC, Baltacıoğlu MK. Effects of blast furnace slag (BFS) and cobalt-boron (Co-B) on hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy 2021;46:29230-42. [DOI: 10.1016/j.ijhydene.2020.12.219] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
331 Chen Z, Dong L, Zhou C, Zhou B, Zheng Z, Chen R, Zang J. Synthesis of highly luminescent Mn-doped CsPbCl 3 nanoplatelets for light-emitting diodes. CrystEngComm 2021;23:793-803. [DOI: 10.1039/d0ce01509a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
332 Liu A, Yang Y, Ren X, Gao M, Liang X, Ma T. A peanut shell-derived economical and eco-friendly biochar catalyst for electrochemical ammonia synthesis under ambient conditions: combined experimental and theoretical study. Catal Sci Technol 2021;11:1526-36. [DOI: 10.1039/d0cy01824d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
333 Sangkhun W, Wanwong S. Natural textile based triboelectric nanogenerators for efficient energy harvesting applications. Nanoscale 2021;13:2420-8. [PMID: 33459747 DOI: 10.1039/d0nr07756a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
334 Huang C, Chen G, Nashalian A, Chen J. Advances in self-powered chemical sensing via a triboelectric nanogenerator. Nanoscale 2021;13:2065-81. [DOI: 10.1039/d0nr07770d] [Cited by in Crossref: 40] [Cited by in F6Publishing: 46] [Article Influence: 40.0] [Reference Citation Analysis]
335 Park SI, Lee D, Kang CW, Lee SM, Kim HJ, Ko Y, Kim S, Son SU. Triboelectric energy harvesting using conjugated microporous polymer nanoparticles in polyurethane films. J Mater Chem A 2021;9:12560-5. [DOI: 10.1039/d1ta01732b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
336 Min J, Sempionatto JR, Teymourian H, Wang J, Gao W. Wearable electrochemical biosensors in North America. Biosensors and Bioelectronics 2021;172:112750. [DOI: 10.1016/j.bios.2020.112750] [Cited by in Crossref: 88] [Cited by in F6Publishing: 65] [Article Influence: 88.0] [Reference Citation Analysis]
337 Jiang W, Lv M, Gao B, Liu B, Yan G, Zhou S, Liu C, Xie W, Che G. Facile construction of an Ag 0 -doped Ag( i )-based coordination polymer via a self-photoreduction strategy for enhanced visible light driven photocatalysis. CrystEngComm 2021;23:5397-402. [DOI: 10.1039/d1ce00699a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
338 Cabello-alvarado CJ, Andrade-guel ML, Medellín-banda DI, Melo-lopez L, Ávila-orta CA. Polymer Composites: Smart Synthetic Fibers Approach in Energy and Environmental Care. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications 2021. [DOI: 10.1007/978-3-030-36268-3_146] [Reference Citation Analysis]
339 Teixeira JS, Costa RS, Pires AL, Pereira AM, Pereira C. Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices. Dalton Trans 2021;50:9983-10013. [PMID: 34264261 DOI: 10.1039/d1dt01568k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
340 Zhou H, Tao P, Lin Y, Chen Z, Zhao Y, Zeng W, Wang S, Chen Z, Li G, Ruan L. A flexible in-plane p–n heterojunction nano-generator with phonon-enhanced photothermoelectric effect to harvest solar energy. J Mater Chem A 2021;9:14958-68. [DOI: 10.1039/d1ta02946k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
341 Lama J, Yau A, Chen G, Sivakumar A, Zhao X, Chen J. Textile triboelectric nanogenerators for self-powered biomonitoring. J Mater Chem A 2021;9:19149-78. [DOI: 10.1039/d1ta02518j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 23.0] [Reference Citation Analysis]
342 Jung K, Son J, Chang S. Self‐Powered Smart Shoes with Tension‐Type Ribbon Harvesters and Sensors. Adv Mater Technol 2021;6:2000872. [DOI: 10.1002/admt.202000872] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
343 Liu W, Xu L, Liu G, Yang H, Bu T, Fu X, Xu S, Fang C, Zhang C. Network Topology Optimization of Triboelectric Nanogenerators for Effectively Harvesting Ocean Wave Energy. iScience 2020;23:101848. [PMID: 33319175 DOI: 10.1016/j.isci.2020.101848] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
344 He T, Guo X, Lee C. Flourishing energy harvesters for future body sensor network: from single to multiple energy sources. iScience 2021;24:101934. [PMID: 33392482 DOI: 10.1016/j.isci.2020.101934] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 23.0] [Reference Citation Analysis]
345 Ahmed A, Hossain MM, Adak B, Mukhopadhyay S. Recent Advances in 2D MXene Integrated Smart-Textile Interfaces for Multifunctional Applications. Chem Mater 2020;32:10296-320. [DOI: 10.1021/acs.chemmater.0c03392] [Cited by in Crossref: 38] [Cited by in F6Publishing: 45] [Article Influence: 19.0] [Reference Citation Analysis]
346 Li Y, Xing L, Yu D, Libanori A, Yang K, Sun J, Nashalian A, Zhu Z, Ma Z, Zhai Y, Chen J. Hollow IrCo Nanoparticles for High-Performance Overall Water Splitting in an Acidic Medium. ACS Appl Nano Mater 2020;3:11916-22. [DOI: 10.1021/acsanm.0c02485] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
347 Gong H, Xu Z, Yang Y, Xu Q, Li X, Cheng X, Huang Y, Zhang F, Zhao J, Li S, Liu X, Huang Q, Guo W. Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing. Biosensors and Bioelectronics 2020;169:112567. [DOI: 10.1016/j.bios.2020.112567] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
348 Qiu M, Zhou F, Sun P, Chen X, Zhao C, Mai W. Unveiling the electrochromic mechanism of Prussian Blue by electronic transition analysis. Nano Energy 2020;78:105148. [DOI: 10.1016/j.nanoen.2020.105148] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
349 Zuo X, Chen L, Pan W, Ma X, Yang T, Zhang X. Fluorinated Polyethylene Propylene Ferroelectrets with an Air-Filled Concentric Tunnel Structure: Preparation, Characterization, and Application in Energy Harvesting. Micromachines (Basel) 2020;11:E1072. [PMID: 33271961 DOI: 10.3390/mi11121072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
350 Razavi S, Iannucci L, Smith Greenhalgh E. A Piezo Smart‐Braid Harvester and Damper for Multifunctional Fiber Reinforced Polymer Composites. Energy Technol 2020;8:2000777. [DOI: 10.1002/ente.202000777] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
351 Shuai L, Guo ZH, Zhang P, Wan J, Pu X, Wang ZL. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy 2020;78:105389. [DOI: 10.1016/j.nanoen.2020.105389] [Cited by in Crossref: 95] [Cited by in F6Publishing: 102] [Article Influence: 47.5] [Reference Citation Analysis]
352 Xu J, Zou Y, Nashalian A, Chen J. Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators. Front Chem 2020;8:577327. [PMID: 33330365 DOI: 10.3389/fchem.2020.577327] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
353 Zou Y, Libanori A, Xu J, Nashalian A, Chen J. Triboelectric Nanogenerator Enabled Smart Shoes for Wearable Electricity Generation. Research (Wash D C) 2020;2020:7158953. [PMID: 33623909 DOI: 10.34133/2020/7158953] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 20.5] [Reference Citation Analysis]
354 Jaramillo-Quintero OA, Barrera-Peralta RV, El Hachimi AG, Guillén-López A, Pérez O, Reguera E, Rincón ME, Muñiz J. Understanding the interaction between heteroatom-doped carbon matrix and Sb2S3 for efficient sodium-ion battery anodes. J Colloid Interface Sci 2021;585:649-59. [PMID: 33153713 DOI: 10.1016/j.jcis.2020.10.044] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
355 Ivanoska-dacikj A, Stachewicz U. Smart textiles and wearable technologies – opportunities offered in the fight against pandemics in relation to current COVID-19 state. REVIEWS ON ADVANCED MATERIALS SCIENCE 2020;59:487-505. [DOI: 10.1515/rams-2020-0048] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
356 Yang S, Cui X, Guo R, Zhang Z, Sang S, Zhang H. Piezoelectric sensor based on graphene-doped PVDF nanofibers for sign language translation. Beilstein J Nanotechnol 2020;11:1655-62. [PMID: 33194515 DOI: 10.3762/bjnano.11.148] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
357 Kaezmarek Pedrini LF, Santos SBO, Trino LD, Scalvi LVA. Anatase–Rutile Transition and Photo-Induced Conductivity of Highly Yb-Doped TiO2 Films Deposited by Acid Sol–Gel Dip-Coating Method. Journal of Elec Materi 2020;49:6369-6379. [DOI: 10.1007/s11664-020-08416-z] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
358 Zhou H, Zhang Y, Qiu Y, Wu H, Qin W, Liao Y, Yu Q, Cheng H. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosensors and Bioelectronics 2020;168:112569. [DOI: 10.1016/j.bios.2020.112569] [Cited by in Crossref: 116] [Cited by in F6Publishing: 123] [Article Influence: 58.0] [Reference Citation Analysis]
359 Zou Y, Raveendran V, Chen J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 2020;77:105303. [DOI: 10.1016/j.nanoen.2020.105303] [Cited by in Crossref: 130] [Cited by in F6Publishing: 135] [Article Influence: 65.0] [Reference Citation Analysis]
360 Pal A, Chatterjee S, Saha S, Barman SR, Choi D, Lee S, Lin Z. A Highly Sensitive Mercury Ion Sensor Based on Solid-Liquid Contact Electrification. ECS J Solid State Sci Technol 2020;9:115029. [DOI: 10.1149/2162-8777/abc059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
361 Zhou Z, Weng L, Tat T, Libanori A, Lin Z, Ge L, Yang J, Chen J. Smart Insole for Robust Wearable Biomechanical Energy Harvesting in Harsh Environments. ACS Nano 2020;14:14126-33. [PMID: 33044812 DOI: 10.1021/acsnano.0c06949] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 34.5] [Reference Citation Analysis]
362 Niu B, Yang S, Hua T, Tian X, Koo M. Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Res 2021;14:1043-52. [DOI: 10.1007/s12274-020-3148-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
363 Luo J, Wang ZL. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat 2020;2. [DOI: 10.1002/eom2.12059] [Cited by in Crossref: 58] [Cited by in F6Publishing: 64] [Article Influence: 29.0] [Reference Citation Analysis]
364 Wang N, Daniels R, Connelly L, Ronzello J, Sotzing GA, Cao Y. All-organic flexible ferroelectret nanogenerator for wearable electronics. 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP) 2020. [DOI: 10.1109/ceidp49254.2020.9437514] [Reference Citation Analysis]
365 Tat T, Libanori A, Au C, Yau A, Chen J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens Bioelectron 2021;171:112714. [PMID: 33068881 DOI: 10.1016/j.bios.2020.112714] [Cited by in Crossref: 97] [Cited by in F6Publishing: 101] [Article Influence: 48.5] [Reference Citation Analysis]
366 Zhang Y, Deng L, Lv H, Chen G. Toward improved trade-off between thermoelectric and mechanical performances in polycarbonate/single-walled carbon nanotube composite films. npj Flex Electron 2020;4. [DOI: 10.1038/s41528-020-00089-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
367 Ryu J, Gao Y, Cho JH, Choi S. A 1-D Yarn-Based Biobattery for Scalable Power Generation in 2-D and 3-D Structured Textiles. J Microelectromech Syst 2020;29:1064-1068. [DOI: 10.1109/jmems.2020.3006006] [Reference Citation Analysis]
368 Jin X, Liu C, Xu T, Su L, Zhang X. Artificial intelligence biosensors: Challenges and prospects. Biosensors and Bioelectronics 2020;165:112412. [DOI: 10.1016/j.bios.2020.112412] [Cited by in Crossref: 64] [Cited by in F6Publishing: 70] [Article Influence: 32.0] [Reference Citation Analysis]
369 Chu X, Zhao X, Zhou Y, Wang Y, Han X, Zhou Y, Ma J, Wang Z, Huang H, Xu Z, Yan C, Zhang H, Yang W, Chen J. An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nano Energy 2020;76:105179. [DOI: 10.1016/j.nanoen.2020.105179] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 23.5] [Reference Citation Analysis]
370 Homayounfar SZ, Rostaminia S, Kiaghadi A, Chen X, Alexander ET, Ganesan D, Andrew TL. Multimodal Smart Eyewear for Longitudinal Eye Movement Tracking. Matter 2020;3:1275-93. [DOI: 10.1016/j.matt.2020.07.030] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
371 Yang J, Yang W, Chen W, Tao X. An elegant coupling: Freeze-casting and versatile polymer composites. Progress in Polymer Science 2020;109:101289. [DOI: 10.1016/j.progpolymsci.2020.101289] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
372 Pace G, Ansaldo A, Serri M, Lauciello S, Bonaccorso F. Electrode selection rules for enhancing the performance of triboelectric nanogenerators and the role of few-layers graphene. Nano Energy 2020;76:104989. [DOI: 10.1016/j.nanoen.2020.104989] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
373 Wang Y, Wang H, Xuan J, Leung DY. Powering future body sensor network systems: A review of power sources. Biosensors and Bioelectronics 2020;166:112410. [DOI: 10.1016/j.bios.2020.112410] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
374 Song Y, Min J, Yu Y, Wang H, Yang Y, Zhang H, Gao W. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 2020;6:eaay9842. [PMID: 32998888 DOI: 10.1126/sciadv.aay9842] [Cited by in Crossref: 179] [Cited by in F6Publishing: 174] [Article Influence: 89.5] [Reference Citation Analysis]
375 Cai M, Yang Z, Cao J, Liao W. Recent Advances in Human Motion Excited Energy Harvesting Systems for Wearables. Energy Technol 2020;8:2000533. [DOI: 10.1002/ente.202000533] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
376 Ma L, Wu R, Liu S, Patil A, Gong H, Yi J, Sheng F, Zhang Y, Wang J, Wang J, Guo W, Wang ZL. A Machine-Fabricated 3D Honeycomb-Structured Flame-Retardant Triboelectric Fabric for Fire Escape and Rescue. Adv Mater 2020;32:e2003897. [PMID: 32803825 DOI: 10.1002/adma.202003897] [Cited by in Crossref: 65] [Cited by in F6Publishing: 70] [Article Influence: 32.5] [Reference Citation Analysis]
377 Kim H, Park JW, Hyeon JS, Sim HJ, Jang Y, Shim Y, Huynh C, Baughman RH, Kim SJ. Electrical energy harvesting from ferritin biscrolled carbon nanotube yarn. Biosensors and Bioelectronics 2020;164:112318. [DOI: 10.1016/j.bios.2020.112318] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
378 Zhang S, Ma Y, Suresh L, Hao A, Bick M, Tan SC, Chen J. Carbon Nanotube Reinforced Strong Carbon Matrix Composites. ACS Nano 2020;14:9282-319. [PMID: 32790347 DOI: 10.1021/acsnano.0c03268] [Cited by in Crossref: 59] [Cited by in F6Publishing: 65] [Article Influence: 29.5] [Reference Citation Analysis]
379 Su Y, Yang T, Zhao X, Cai Z, Chen G, Yao M, Chen K, Bick M, Wang J, Li S, Xie G, Tai H, Du X, Jiang Y, Chen J. A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis. Nano Energy 2020;74:104941. [DOI: 10.1016/j.nanoen.2020.104941] [Cited by in Crossref: 139] [Cited by in F6Publishing: 147] [Article Influence: 69.5] [Reference Citation Analysis]
380 Han M, Kwak JW, Rogers JA. Soft Sign Language Interpreter on Your Skin. Matter 2020;3:337-8. [DOI: 10.1016/j.matt.2020.07.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
381 Zhou Y, Deng W, Xu J, Chen J. Engineering Materials at the Nanoscale for Triboelectric Nanogenerators. Cell Reports Physical Science 2020;1:100142. [DOI: 10.1016/j.xcrp.2020.100142] [Cited by in Crossref: 72] [Cited by in F6Publishing: 56] [Article Influence: 36.0] [Reference Citation Analysis]
382 Chu D, Nashalian A, Zhou Y, Zhao X, Guo D, He R, Chen W, Chen J. Low-Cost and Nature-Friendly Hierarchical Porous Carbon for Enhanced Capacitive Electrochemical Energy Storage. ACS Appl Energy Mater 2020;3:7246-50. [DOI: 10.1021/acsaem.0c01289] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
383 Deng W, Zhou Y, Zhao X, Zhang S, Zou Y, Xu J, Yeh MH, Guo H, Chen J. Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators. ACS Nano 2020;14:9050-8. [PMID: 32627531 DOI: 10.1021/acsnano.0c04113] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 30.5] [Reference Citation Analysis]
384 Pontes K, Indrusiak T, Soares BG. Poly(vinylidene fluoride‐co‐hexafluorpropylene)/polyaniline conductive blends: Effect of the mixing procedure on the electrical properties and electromagnetic interference shielding effectiveness. J Appl Polym Sci 2021;138:49705. [DOI: 10.1002/app.49705] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
385 Bai Y, Palosaari J, Tofel P, Juuti J. A Single‐Material Multi‐Source Energy Harvester, Multifunctional Sensor, and Integrated Harvester–Sensor System—Demonstration of Concept. Energy Technol 2020;8:2000461. [DOI: 10.1002/ente.202000461] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
386 Dinh T, Nguyen T, Phan HP, Nguyen NT, Dao DV, Bell J. Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosens Bioelectron 2020;166:112460. [PMID: 32862846 DOI: 10.1016/j.bios.2020.112460] [Cited by in Crossref: 69] [Cited by in F6Publishing: 75] [Article Influence: 34.5] [Reference Citation Analysis]
387 Murastov G, Bogatova E, Brazovskiy K, Amin I, Lipovka A, Dogadina E, Cherepnyov A, Ananyeva A, Plotnikov E, Ryabov V, Rodriguez RD, Sheremet E. Flexible and water-stable graphene-based electrodes for long-term use in bioelectronics. Biosens Bioelectron 2020;166:112426. [PMID: 32750676 DOI: 10.1016/j.bios.2020.112426] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
388 Zhou Z, Chen K, Li X, Zhang S, Wu Y, Zhou Y, Meng K, Sun C, He Q, Fan W, Fan E, Lin Z, Tan X, Deng W, Yang J, Chen J. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 2020;3:571-8. [DOI: 10.1038/s41928-020-0428-6] [Cited by in Crossref: 271] [Cited by in F6Publishing: 280] [Article Influence: 135.5] [Reference Citation Analysis]
389 Zhou H, Zhang N, Yang Y, Xue J, Kong L, Zhang Q, Liu R, Fan X, Tao C. Floating Networks of Alga-like Photoelectrodes for Highly Efficient Photoelectrochemical H 2 Production. ACS Sustainable Chem Eng 2020;8:10564-71. [DOI: 10.1021/acssuschemeng.0c03575] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
390 Yin H, Hui KS, Zhao X, Mei S, Lv X, Hui KN, Chen J. Eco-Friendly Synthesis of Self-Supported N-Doped Sb 2 S 3 -Carbon Fibers with High Atom Utilization and Zero Discharge for Commercial Full Lithium-Ion Batteries. ACS Appl Energy Mater 2020;3:6897-906. [DOI: 10.1021/acsaem.0c00984] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 19.0] [Reference Citation Analysis]
391 Jin L, Xiao X, Deng W, Nashalian A, He D, Raveendran V, Yan C, Su H, Chu X, Yang T, Li W, Yang W, Chen J. Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators. Nano Lett 2020;20:6404-11. [DOI: 10.1021/acs.nanolett.0c01987] [Cited by in Crossref: 152] [Cited by in F6Publishing: 159] [Article Influence: 76.0] [Reference Citation Analysis]
392 Fang Y, Li Y, Wang X, Zhou Z, Zhang K, Zhou J, Hu B. Cryo‐Transferred Ultrathin and Stretchable Epidermal Electrodes. Small 2020;16:2000450. [DOI: 10.1002/smll.202000450] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
393 Su Y, Wang J, Wang B, Yang T, Yang B, Xie G, Zhou Y, Zhang S, Tai H, Cai Z, Chen G, Jiang Y, Chen LQ, Chen J. Alveolus-Inspired Active Membrane Sensors for Self-Powered Wearable Chemical Sensing and Breath Analysis. ACS Nano 2020;14:6067-75. [PMID: 32271532 DOI: 10.1021/acsnano.0c01804] [Cited by in Crossref: 181] [Cited by in F6Publishing: 191] [Article Influence: 90.5] [Reference Citation Analysis]
394 Fang Y, Li Y, Li Y, Ding M, Xie J, Hu B. Solution-Processed Submicron Free-Standing, Conformal, Transparent, Breathable Epidermal Electrodes. ACS Appl Mater Interfaces 2020;12:23689-96. [PMID: 32364375 DOI: 10.1021/acsami.0c04134] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
395 Pu S, Liao Y, Chen K, Fu J, Zhang S, Ge L, Conta G, Bouzarif S, Cheng T, Hu X, Liu K, Chen J. Thermogalvanic Hydrogel for Synchronous Evaporative Cooling and Low-Grade Heat Energy Harvesting. Nano Lett 2020;20:3791-7. [PMID: 32319296 DOI: 10.1021/acs.nanolett.0c00800] [Cited by in Crossref: 89] [Cited by in F6Publishing: 93] [Article Influence: 44.5] [Reference Citation Analysis]
396 He Y, Shi X, Chen K, Yang X, Chen J. Titanium-Doped P-Type WO3 Thin Films for Liquefied Petroleum Gas Detection. Nanomaterials (Basel) 2020;10:E727. [PMID: 32290395 DOI: 10.3390/nano10040727] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
397 Ahmed A, Jalil MA, Hossain MM, Moniruzzaman M, Adak B, Islam MT, Parvez MS, Mukhopadhyay S. A PEDOT:PSS and graphene-clad smart textile-based wearable electronic Joule heater with high thermal stability. J Mater Chem C 2020;8:16204-15. [DOI: 10.1039/d0tc03368e] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 25.5] [Reference Citation Analysis]