BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018;118:1216-52. [PMID: 29405707 DOI: 10.1021/acs.chemrev.7b00181] [Cited by in Crossref: 107] [Cited by in F6Publishing: 108] [Article Influence: 26.8] [Reference Citation Analysis]
Number Citing Articles
1 Naveen Sadhu M, Sivanandhan D, Gajendran C, Tantry S, Dewang P, Murugan K, Chickamunivenkatappa S, Zainuddin M, Nair S, Vaithilingam K, Rajagopal S. Novel dual LSD1/HDAC6 inhibitors for the treatment of multiple myeloma. Bioorg Med Chem Lett 2021;34:127763. [PMID: 33359604 DOI: 10.1016/j.bmcl.2020.127763] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Liu Y, Yang H, Liu X, Gu H, Li Y, Sun C. Protein acetylation: a novel modus of obesity regulation. J Mol Med (Berl) 2021;99:1221-35. [PMID: 34061242 DOI: 10.1007/s00109-021-02082-2] [Reference Citation Analysis]
3 Li X, Li S, Li B, Li Y, Aman S, Xia K, Yang Y, Ahmad B, Wu H. Acetylation of ELF5 suppresses breast cancer progression by promoting its degradation and targeting CCND1. NPJ Precis Oncol 2021;5:20. [PMID: 33742100 DOI: 10.1038/s41698-021-00158-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Xiong Y, Zhang M, Li Y. Recent Advances in the Development of CBP/p300 Bromodomain Inhibitors. CMC 2020;27:5583-98. [DOI: 10.2174/0929867326666190731141055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
5 Wang ZA, Cole PA. The Chemical Biology of Reversible Lysine Post-translational Modifications. Cell Chem Biol 2020;27:953-69. [PMID: 32698016 DOI: 10.1016/j.chembiol.2020.07.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
6 Klingler FM, Gastreich M, Grygorenko OO, Savych O, Borysko P, Griniukova A, Gubina KE, Lemmen C, Moroz YS. SAR by Space: Enriching Hit Sets from the Chemical Space. Molecules 2019;24:E3096. [PMID: 31454992 DOI: 10.3390/molecules24173096] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
7 Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br J Clin Pharmacol 2021. [PMID: 33971031 DOI: 10.1111/bcp.14889] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
8 Osaka N, Hirota Y, Ito D, Ikeda Y, Kamata R, Fujii Y, Chirasani VR, Campbell SL, Takeuchi K, Senda T, Sasaki AT. Divergent Mechanisms Activating RAS and Small GTPases Through Post-translational Modification. Front Mol Biosci 2021;8:707439. [PMID: 34307463 DOI: 10.3389/fmolb.2021.707439] [Reference Citation Analysis]
9 Bloom CR, North BJ. Physiological relevance of post-translational regulation of the spindle assembly checkpoint protein BubR1. Cell Biosci 2021;11:76. [PMID: 33892776 DOI: 10.1186/s13578-021-00589-2] [Reference Citation Analysis]
10 Cattaneo A, Chirichella M. Targeting the Post-translational Proteome with Intrabodies. Trends Biotechnol. 2019;37:578-591. [PMID: 30577991 DOI: 10.1016/j.tibtech.2018.11.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
11 Li Y, Mi P, Chen X, Wu J, Qin W, Shen Y, Zhang P, Tang Y, Cheng CY, Sun F. Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis. Endocrinology 2021;162:bqaa210. [PMID: 33175103 DOI: 10.1210/endocr/bqaa210] [Reference Citation Analysis]
12 Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M. Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 2021. [PMID: 34433238 DOI: 10.1515/hsz-2021-0139] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Saintilnord WN, Fondufe-Mittendorf Y. Arsenic-induced epigenetic changes in cancer development. Semin Cancer Biol 2021:S1044-579X(21)00069-9. [PMID: 33798722 DOI: 10.1016/j.semcancer.2021.03.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Zhihao L, Jingyu N, Lan L, Michael S, Rui G, Xiyun B, Xiaozhi L, Guanwei F. SERCA2a: a key protein in the Ca2+ cycle of the heart failure. Heart Fail Rev 2020;25:523-35. [PMID: 31701344 DOI: 10.1007/s10741-019-09873-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
15 Abbassi NE, Biela A, Glatt S, Lin TY. How Elongator Acetylates tRNA Bases. Int J Mol Sci 2020;21:E8209. [PMID: 33152999 DOI: 10.3390/ijms21218209] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Lattanzi W, Ripoli C, Greco V, Barba M, Iavarone F, Minucci A, Urbani A, Grassi C, Parolini O. Basic and Preclinical Research for Personalized Medicine. J Pers Med 2021;11:354. [PMID: 33946634 DOI: 10.3390/jpm11050354] [Reference Citation Analysis]
17 Aung LHH, Jumbo JCC, Wang Y, Li P. Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: A concise review. Mol Ther Nucleic Acids 2021;25:416-43. [PMID: 34484866 DOI: 10.1016/j.omtn.2021.06.006] [Reference Citation Analysis]
18 Barjaktarovic Z, Merl-Pham J, Braga-Tanaka I, Tanaka S, Hauck SM, Saran A, Mancuso M, Atkinson MJ, Tapio S, Azimzadeh O. Hyperacetylation of Cardiac Mitochondrial Proteins Is Associated with Metabolic Impairment and Sirtuin Downregulation after Chronic Total Body Irradiation of ApoE -/- Mice. Int J Mol Sci 2019;20:E5239. [PMID: 31652604 DOI: 10.3390/ijms20205239] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
19 Francois A, Canella A, Marcho LM, Stratton MS. Protein acetylation in cardiac aging. J Mol Cell Cardiol 2021;157:90-7. [PMID: 33915138 DOI: 10.1016/j.yjmcc.2021.04.007] [Reference Citation Analysis]
20 Adam AC, Saito T, Espe M, Whatmore P, Fernandes JMO, Vikeså V, Skjærven KH. Metabolic and molecular signatures of improved growth in Atlantic salmon (Salmo salar) fed surplus levels of methionine, folic acid, vitamin B6 and B12 throughout smoltification. Br J Nutr 2021;:1-14. [PMID: 34176547 DOI: 10.1017/S0007114521002336] [Reference Citation Analysis]
21 Wei Z, Liu X, Cheng C, Yu W, Yi P. Metabolism of Amino Acids in Cancer. Front Cell Dev Biol 2020;8:603837. [PMID: 33511116 DOI: 10.3389/fcell.2020.603837] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
22 Ruan HB, Crawford PA. Ketone bodies as epigenetic modifiers. Curr Opin Clin Nutr Metab Care 2018;21:260-6. [PMID: 29697540 DOI: 10.1097/MCO.0000000000000475] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 9.7] [Reference Citation Analysis]
23 Clegg MA, Tomkinson NCO, Prinjha RK, Humphreys PG. Advancements in the Development of non-BET Bromodomain Chemical Probes. ChemMedChem 2019;14:362-85. [PMID: 30624862 DOI: 10.1002/cmdc.201800738] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
24 Anyetei-Anum CS, Evans RM, Back AM, Roggero VR, Allison LA. Acetylation modulates thyroid hormone receptor intracellular localization and intranuclear mobility. Mol Cell Endocrinol 2019;495:110509. [PMID: 31319097 DOI: 10.1016/j.mce.2019.110509] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
25 Salem A, Wilson CJ, Rutledge BS, Dilliott A, Farhan S, Choy W, Duennwald ML. Matrin3: Disorder and ALS Pathogenesis. Front Mol Biosci 2022;8:794646. [DOI: 10.3389/fmolb.2021.794646] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Kirfel P, Skaljac M, Grotmann J, Kessel T, Seip M, Michaelis K, Vilcinskas A. Inhibition of histone acetylation and deacetylation enzymes affects longevity, development, and fecundity in the pea aphid (Acyrthosiphon pisum). Arch Insect Biochem Physiol 2020;103:e21614. [PMID: 31498475 DOI: 10.1002/arch.21614] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
27 Deota S, Rathnachalam S, Namrata K, Boob M, Fulzele A, Radhika S, Ganguli S, Balaji C, Kaypee S, Vishwakarma KK, Kundu TK, Bhandari R, Gonzalez de Peredo A, Mishra M, Venkatramani R, Kolthur-Seetharam U. Allosteric Regulation of Cyclin-B Binding by the Charge State of Catalytic Lysine in CDK1 Is Essential for Cell-Cycle Progression. J Mol Biol 2019;431:2127-42. [PMID: 30974121 DOI: 10.1016/j.jmb.2019.04.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
28 Luo YY, Wu JJ, Li YM. Regulation of liquid-liquid phase separation with focus on post-translational modifications. Chem Commun (Camb) 2021;57:13275-87. [PMID: 34816836 DOI: 10.1039/d1cc05266g] [Reference Citation Analysis]
29 Fleck K, Nitz M, Jeffers V. "Reading" a new chapter in protozoan parasite transcriptional regulation. PLoS Pathog 2021;17:e1010056. [PMID: 34855919 DOI: 10.1371/journal.ppat.1010056] [Reference Citation Analysis]
30 Ou T, Yang W, Li W, Lu Y, Dong Z, Zhu H, Sun X, Dong Z, Weng X, Chang S, Li H, Li Y, Qiu Z, Hu K, Sun A, Ge J. SIRT5 deficiency enhances the proliferative and therapeutic capacities of adipose-derived mesenchymal stem cells via metabolic switching. Clin Transl Med 2020;10:e172. [PMID: 32997407 DOI: 10.1002/ctm2.172] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Papazoglou P, Peng L, Sachinidis A. Epigenetic Mechanisms Involved in the Cardiovascular Toxicity of Anticancer Drugs. Front Cardiovasc Med 2021;8:658900. [PMID: 33987212 DOI: 10.3389/fcvm.2021.658900] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Fakouri NB, Hansen TL, Desler C, Anugula S, Rasmussen LJ. From Powerhouse to Perpetrator-Mitochondria in Health and Disease. Biology (Basel) 2019;8:E35. [PMID: 31083572 DOI: 10.3390/biology8020035] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
33 Liu M, Guo L, Fu Y, Huo M, Qi Q, Zhao G. Bacterial protein acetylation and its role in cellular physiology and metabolic regulation. Biotechnol Adv 2021;53:107842. [PMID: 34624455 DOI: 10.1016/j.biotechadv.2021.107842] [Reference Citation Analysis]
34 Wang C, Scott SM, Subramanian K, Loguercio S, Zhao P, Hutt DM, Farhat NY, Porter FD, Balch WE. Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process. Nat Commun 2019;10:5052. [PMID: 31699992 DOI: 10.1038/s41467-019-12969-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
35 Svensson K, LaBarge SA, Sathe A, Martins VF, Tahvilian S, Cunliffe JM, Sasik R, Mahata SK, Meyer GA, Philp A, David LL, Ward SR, McCurdy CE, Aslan JE, Schenk S. p300 and cAMP response element-binding protein-binding protein in skeletal muscle homeostasis, contractile function, and survival. J Cachexia Sarcopenia Muscle 2020;11:464-77. [PMID: 31898871 DOI: 10.1002/jcsm.12522] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
36 Jennings EQ, Fritz KS, Galligan JJ. Biochemical genesis of enzymatic and non-enzymatic post-translational modifications. Mol Aspects Med 2021;:101053. [PMID: 34838336 DOI: 10.1016/j.mam.2021.101053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Alquezar C, Arya S, Kao AW. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front Neurol 2020;11:595532. [PMID: 33488497 DOI: 10.3389/fneur.2020.595532] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
38 Márquez I, Pérez-Mejías G, Guerra-Castellano A, Olloqui-Sariego JL, Andreu R, Calvente JJ, De la Rosa MA, Díaz-Moreno I. Structural and functional insights into lysine acetylation of cytochrome c using mimetic point mutants. FEBS Open Bio 2021. [PMID: 34455704 DOI: 10.1002/2211-5463.13284] [Reference Citation Analysis]
39 Tsumagari K, Ishihama Y. Acylated peptide enrichment utilizing lysine deacylases for lysine acylomics. Biochem Biophys Res Commun 2021;563:60-5. [PMID: 34062387 DOI: 10.1016/j.bbrc.2021.05.077] [Reference Citation Analysis]
40 Asfaha Y, Schrenk C, Alves Avelar LA, Hamacher A, Pflieger M, Kassack MU, Kurz T. Recent advances in class IIa histone deacetylases research. Bioorg Med Chem 2019;27:115087. [PMID: 31561937 DOI: 10.1016/j.bmc.2019.115087] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
41 Baldensperger T, Eggen M, Kappen J, Winterhalter PR, Pfirrmann T, Glomb MA. Comprehensive analysis of posttranslational protein modifications in aging of subcellular compartments. Sci Rep 2020;10:7596. [PMID: 32371922 DOI: 10.1038/s41598-020-64265-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
42 Li S, Zhao C, Zhang G, Xu Q, Liu Q, Zhao W, James Chou C, Zhang Y. Development of selective HDAC6 inhibitors with in vitro and in vivo anti-multiple myeloma activity. Bioorg Chem 2021;116:105278. [PMID: 34474303 DOI: 10.1016/j.bioorg.2021.105278] [Reference Citation Analysis]
43 Wang Y, Liao G, Wang R, Tang DD. Acetylation of Abelson interactor 1 at K416 regulates actin cytoskeleton and smooth muscle contraction. FASEB J 2021;35:e21811. [PMID: 34369620 DOI: 10.1096/fj.202100415R] [Reference Citation Analysis]
44 Lv S. Research fronts of Chemical Biology. Pure and Applied Chemistry 2021;93:1473-85. [DOI: 10.1515/pac-2020-1004] [Reference Citation Analysis]
45 Adhikari R, Yang M, Saikia N, Dutta C, Alharbi WFA, Shan Z, Pandey R, Tiwari A. Acetylation of Aβ42 at Lysine 16 Disrupts Amyloid Formation. ACS Chem Neurosci 2020;11:1178-91. [PMID: 32207962 DOI: 10.1021/acschemneuro.0c00069] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
46 Song J, Zheng YG. Bioorthogonal Reporters for Detecting and Profiling Protein Acetylation and Acylation. SLAS Discov 2020;25:148-62. [PMID: 31711353 DOI: 10.1177/2472555219887144] [Reference Citation Analysis]
47 Song J, Ngo L, Bell K, Zheng YG. Chemoproteomic Profiling of Protein Substrates of a Major Lysine Acetyltransferase in the Native Cellular Context. ACS Chem Biol 2022;17:1092-102. [PMID: 35417122 DOI: 10.1021/acschembio.1c00935] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Liu L, Ge W, Zhang Z, Li Y, Xie M, Zhao C, Yao C, Luo C, Wu Z, Wang W, Zhao D, Zhang J, Qiu W, Wang Y. Sublytic C5b-9 triggers glomerular mesangial cell proliferation via enhancing FGF1 and PDGFα gene transcription mediated by GCN5-dependent SOX9 acetylation in rat Thy-1 nephritis. FASEB J 2021;35:e21751. [PMID: 34156114 DOI: 10.1096/fj.202002814RR] [Reference Citation Analysis]
49 Benite-Ribeiro SA, Rodrigues VAL, Machado MRF. Food intake in early life and epigenetic modifications of pro-opiomelanocortin expression in arcuate nucleus. Mol Biol Rep 2021;48:3773-84. [PMID: 33877530 DOI: 10.1007/s11033-021-06340-x] [Reference Citation Analysis]
50 Becker L, Nogueira MS, Klima C, de Angelis MH, Peleg S. Rapid and transient oxygen consumption increase following acute HDAC/KDAC inhibition in Drosophila tissue. Sci Rep 2018;8:4199. [PMID: 29520020 DOI: 10.1038/s41598-018-22674-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
51 Che D, Nyingwa PS, Ralinala KM, Maswanganye GMT, Wu G. Amino Acids in the Nutrition, Metabolism, and Health of Domestic Cats. Adv Exp Med Biol 2021;1285:217-31. [PMID: 33770409 DOI: 10.1007/978-3-030-54462-1_11] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
52 Hatakeyama D, Shoji M, Ogata S, Masuda T, Nakano M, Komatsu T, Saitoh A, Makiyama K, Tsuneishi H, Miyatake A, Takahira M, Nishikawa E, Ohkubo A, Noda T, Kawaoka Y, Ohtsuki S, Kuzuhara T. Acetylation of the influenza A virus polymerase subunit PA in the N-terminal domain positively regulates its endonuclease activity. FEBS J 2021. [PMID: 34270849 DOI: 10.1111/febs.16123] [Reference Citation Analysis]
53 Baldensperger T, Glomb MA. Pathways of Non-enzymatic Lysine Acylation. Front Cell Dev Biol 2021;9:664553. [PMID: 33996820 DOI: 10.3389/fcell.2021.664553] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Kakkanas A, Karamichali E, Koufogeorgou EI, Kotsakis SD, Georgopoulou U, Foka P. Targeting the YXXΦ Motifs of the SARS Coronaviruses 1 and 2 ORF3a Peptides by In Silico Analysis to Predict Novel Virus—Host Interactions. Biomolecules 2022;12:1052. [DOI: 10.3390/biom12081052] [Reference Citation Analysis]
55 Griffiths RC, Smith FR, Long JE, Scott D, Williams HEL, Oldham NJ, Layfield R, Mitchell NJ. Site-Selective Installation of Nϵ -Modified Sidechains into Peptide and Protein Scaffolds via Visible-Light-Mediated Desulfurative C-C Bond Formation. Angew Chem Int Ed Engl 2021. [PMID: 34713958 DOI: 10.1002/anie.202110223] [Reference Citation Analysis]
56 Rajendran A, Soory A, Khandelwal N, Ratnaparkhi G, Kamat SS. A multi-omics analysis reveals that the lysine deacetylase ABHD14B influences glucose metabolism in mammals. J Biol Chem 2022;:102128. [PMID: 35700823 DOI: 10.1016/j.jbc.2022.102128] [Reference Citation Analysis]
57 Kirfel P, Vilcinskas A, Skaljac M. Lysine Acetyltransferase p300/CBP Plays an Important Role in Reproduction, Embryogenesis and Longevity of the Pea Aphid Acyrthosiphon pisum. Insects 2020;11:E265. [PMID: 32357443 DOI: 10.3390/insects11050265] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Duarte IF, Caio J, Moedas MF, Rodrigues LA, Leandro AP, Rivera IA, Silva MFB. Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Cell Mol Life Sci 2021;78:7451-68. [PMID: 34718827 DOI: 10.1007/s00018-021-03996-3] [Reference Citation Analysis]
59 Alves Avelar LA, Schrenk C, Sönnichsen M, Hamacher A, Hansen FK, Schliehe-Diecks J, Borkhardt A, Bhatia S, Kassack MU, Kurz T. Synergistic induction of apoptosis in resistant head and neck carcinoma and leukemia by alkoxyamide-based histone deacetylase inhibitors. Eur J Med Chem 2021;211:113095. [PMID: 33360560 DOI: 10.1016/j.ejmech.2020.113095] [Reference Citation Analysis]
60 Bayat P, Pakravan P, Salouti M, Ezzati Nazhad Dolatabadi J. Lysine Decorated Solid Lipid Nanoparticles of Epirubicin for Cancer Targeting and Therapy. Adv Pharm Bull 2021;11:96-103. [PMID: 33747856 DOI: 10.34172/apb.2021.010] [Reference Citation Analysis]
61 Yoneda M, Yasui K, Nakagawa T, Hattori N, Ito T. Nucleosome assembly protein 1 (NAP-1) is a regulator of histone H1 acetylation. J Biochem 2021:mvab098. [PMID: 34551067 DOI: 10.1093/jb/mvab098] [Reference Citation Analysis]
62 Chen J, Liu Q, Zeng L, Huang X. Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Front Microbiol 2020;11:574736. [PMID: 33133044 DOI: 10.3389/fmicb.2020.574736] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Harris PS, Michel CR, Yun Y, McGinnis CD, Assiri MA, Ahmadi AR, Sun Z, Roede JR, Burchill MA, Orlicky DJ, McCullough RL, Fritz KS. Proteomic analysis of alcohol-associated hepatitis reveals glycoprotein NMB (GPNMB) as a novel hepatic and serum biomarker. Alcohol 2022;99:35-48. [PMID: 34923085 DOI: 10.1016/j.alcohol.2021.11.005] [Reference Citation Analysis]
64 Wang WW, Chen LY, Wozniak JM, Jadhav AM, Anderson H, Malone TE, Parker CG. Targeted Protein Acetylation in Cells Using Heterobifunctional Molecules. J Am Chem Soc 2021;143:16700-8. [PMID: 34592107 DOI: 10.1021/jacs.1c07850] [Reference Citation Analysis]
65 Lacoursiere RE, Hadi D, Shaw GS. Acetylation, Phosphorylation, Ubiquitination (Oh My!): Following Post-Translational Modifications on the Ubiquitin Road. Biomolecules 2022;12:467. [DOI: 10.3390/biom12030467] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Naseer S, Fati SM, Muneer A, Ali RF. iAceS-Deep: Sequence-Based Identification of Acetyl Serine Sites in Proteins Using PseAAC and Deep Neural Representations. IEEE Access 2022;10:12953-65. [DOI: 10.1109/access.2022.3144226] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Hassell-hart S, Runcie A, Krojer T, Doyle J, Lineham E, Ocasio CA, Neto BAD, Fedorov O, Marsh G, Maple H, Felix R, Banks R, Ciulli A, Picaud S, Filippakopoulos P, von Delft F, Brennan P, Stewart HJS, Chevassut TJ, Walker M, Austin C, Morley S, Spencer J. Synthesis and Biological Investigation of (+)-JD1, an Organometallic BET Bromodomain Inhibitor. Organometallics 2020;39:408-16. [DOI: 10.1021/acs.organomet.9b00750] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Zhang L, Liu Y, Zhao R, Zhang C, Jiang W, Gu Y. Interactive Regulation of Formate Dehydrogenase during CO2 Fixation in Gas-Fermenting Bacteria. mBio 2020;11:e00650-20. [PMID: 32817100 DOI: 10.1128/mBio.00650-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
69 Kong F, Ma L, Wang X, You H, Zheng K, Tang R. Regulation of epithelial-mesenchymal transition by protein lysine acetylation. Cell Commun Signal 2022;20:57. [PMID: 35484625 DOI: 10.1186/s12964-022-00870-y] [Reference Citation Analysis]
70 Gao J, Shao K, Chen X, Li Z, Liu Z, Yu Z, Aung LHH, Wang Y, Li P. The involvement of post-translational modifications in cardiovascular pathologies: Focus on SUMOylation, neddylation, succinylation, and prenylation. Journal of Molecular and Cellular Cardiology 2020;138:49-58. [DOI: 10.1016/j.yjmcc.2019.11.146] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
71 Nalbantoglu S, Karadag A. Metabolomics bridging proteomics along metabolites/oncometabolites and protein modifications: Paving the way toward integrative multiomics. J Pharm Biomed Anal 2021;199:114031. [PMID: 33857836 DOI: 10.1016/j.jpba.2021.114031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Zhou S, Cai Y, Liu X, Jin L, Wang X, Ma W, Zhang T. Role of H2B mono-ubiquitination in the initiation and progression of cancer. Bull Cancer 2021;108:385-98. [PMID: 33685627 DOI: 10.1016/j.bulcan.2020.12.007] [Reference Citation Analysis]
73 Trejo-Zambrano MI, Gómez-Bañuelos E, Andrade F. Redox-Mediated Carbamylation As a Hapten Model Applied to the Origin of Antibodies to Modified Proteins in Rheumatoid Arthritis. Antioxid Redox Signal 2021. [PMID: 33906423 DOI: 10.1089/ars.2021.0064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Zhou B, Shen Z, Liu Y, Wang C, Shen QW. Proteomic analysis reveals that lysine acetylation mediates the effect of antemortem stress on postmortem meat quality development. Food Chemistry 2019;293:396-407. [DOI: 10.1016/j.foodchem.2019.04.122] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
75 Yao D, Li C, Jiang J, Huang J, Wang J, He Z, Zhang J. Design, synthesis and biological evaluation of novel HDAC inhibitors with improved pharmacokinetic profile in breast cancer. Eur J Med Chem 2020;205:112648. [PMID: 32791401 DOI: 10.1016/j.ejmech.2020.112648] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
76 Merkler DJ, Leahy JW. Binding-based proteomic profiling and the fatty acid amides. Trends Res 2018;1. [PMID: 30775690 DOI: 10.15761/TR.1000120] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
77 Yao G, Huang Q. Theoretical and experimental study of the infrared and Raman spectra of L-lysine acetylation. Spectrochim Acta A Mol Biomol Spectrosc 2022;278:121371. [PMID: 35594700 DOI: 10.1016/j.saa.2022.121371] [Reference Citation Analysis]
78 Kepchia D, Huang L, Dargusch R, Rissman RA, Shokhirev MN, Fischer W, Schubert D. Diverse proteins aggregate in mild cognitive impairment and Alzheimer's disease brain. Alzheimers Res Ther 2020;12:75. [PMID: 32560738 DOI: 10.1186/s13195-020-00641-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
79 Simon RP, Rumpf T, Linkuviene V, Matulis D, Akhtar A, Jung M. Cofactor Analogues as Active Site Probes in Lysine Acetyltransferases. J Med Chem 2019;62:2582-97. [PMID: 30785747 DOI: 10.1021/acs.jmedchem.8b01887] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
80 Schiedel M, Conway SJ. Small molecules as tools to study the chemical epigenetics of lysine acetylation. Current Opinion in Chemical Biology 2018;45:166-78. [DOI: 10.1016/j.cbpa.2018.06.015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
81 Monzani E, Nicolis S, Dell'acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L. Dopamin, oxidativer Stress und Protein‐Chinonmodifikationen bei Parkinson und anderen neurodegenerativen Erkrankungen. Angew Chem 2019;131:6580-96. [DOI: 10.1002/ange.201811122] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
82 Fındık V, Ruiz-López MF, Erdem SS. Mechanistic insights into lysine-targeting covalent inhibition through a theoretical study of ester aminolysis. Org Biomol Chem 2021;19:9996-10004. [PMID: 34755747 DOI: 10.1039/d1ob01963e] [Reference Citation Analysis]
83 Folz JS, Patterson JA, Hanson AD, Fiehn O. Quantification of N6-formylated lysine in bacterial protein digests using liquid chromatography/tandem mass spectrometry despite spontaneous formation and matrix effects. Rapid Commun Mass Spectrom 2021;35:e9019. [PMID: 33617101 DOI: 10.1002/rcm.9019] [Reference Citation Analysis]
84 Estoppey D, Schutzius G, Kolter C, Salathe A, Wunderlin T, Meyer A, Nigsch F, Bouwmeester T, Hoepfner D, Kirkland S. Genome-wide CRISPR-Cas9 screens identify mechanisms of BET bromodomain inhibitor sensitivity. iScience 2021;24:103323. [PMID: 34805786 DOI: 10.1016/j.isci.2021.103323] [Reference Citation Analysis]
85 Lammers M. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective. Front Microbiol 2021;12:757179. [PMID: 34721364 DOI: 10.3389/fmicb.2021.757179] [Reference Citation Analysis]
86 Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021;13:2872. [PMID: 34201346 DOI: 10.3390/cancers13122872] [Reference Citation Analysis]
87 Maas MN, Hintzen JCJ, Mecinović J. Probing lysine posttranslational modifications by unnatural amino acids. Chem Commun (Camb) 2022. [PMID: 35678513 DOI: 10.1039/d2cc00708h] [Reference Citation Analysis]
88 McGee SL, Hargreaves M. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat Rev Endocrinol 2020;16:495-505. [PMID: 32632275 DOI: 10.1038/s41574-020-0377-1] [Cited by in Crossref: 43] [Cited by in F6Publishing: 31] [Article Influence: 21.5] [Reference Citation Analysis]
89 Thomas JM, Batista PJ, Meier JL. Metabolic Regulation of the Epitranscriptome. ACS Chem Biol 2019;14:316-24. [PMID: 30653309 DOI: 10.1021/acschembio.8b00951] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
90 Oliva-Olivera W, Castellano-Castillo D, von Meyenn F, Cardona F, Lönnberg T, Tinahones FJ. Human adipose tissue-derived stem cell paracrine networks vary according metabolic risk and after TNFα-induced death: An analysis at the single-cell level. Metabolism 2021;116:154466. [PMID: 33333081 DOI: 10.1016/j.metabol.2020.154466] [Reference Citation Analysis]
91 Cao M, Yang J, Wang X, Hu W, Xie X, Zhao Y, Liu M, Wei Y, Yu M, Hu T. Sophora subprostrate polysaccharide regulates histone acetylation to inhibit inflammation in PCV2-infected murine splenic lymphocytes in vitro and in vivo. Int J Biol Macromol 2021;191:668-78. [PMID: 34560152 DOI: 10.1016/j.ijbiomac.2021.09.119] [Reference Citation Analysis]
92 Gomes RA, Fornari E, Silva Rocha AC, Tripodi GL, Silva Emery FD, Goulart Trossini GH. Parasitic sirtuin 2 as an opportunity in drug discovery. Future Med Chem 2021;13:1397-409. [PMID: 34189957 DOI: 10.4155/fmc-2021-0091] [Reference Citation Analysis]
93 Yao D, Zhang J, Wang J, Pan D, He Z. Discovery of novel ATAD2 bromodomain inhibitors that trigger apoptosis and autophagy in breast cells by structure-based virtual screening. J Enzyme Inhib Med Chem 2020;35:713-25. [PMID: 32174193 DOI: 10.1080/14756366.2020.1740924] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
94 Chatterjee B, Ghosh K, Kanade SR. Resveratrol modulates epigenetic regulators of promoter histone methylation and acetylation that restores BRCA1, p53, p21CIP1 in human breast cancer cell lines. Biofactors 2019;45:818-29. [PMID: 31317586 DOI: 10.1002/biof.1544] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
95 Wang T, Song P, Zhong T, Wang X, Xiang X, Liu Q, Chen H, Xia T, Liu H, Niu Y, Hu Y, Xu L, Shao Y, Zhu L, Qi H, Shen J, Hou T, Fodde R, Shao J. The inflammatory cytokine IL-6 induces FRA1 deacetylation promoting colorectal cancer stem-like properties. Oncogene 2019;38:4932-47. [PMID: 30804456 DOI: 10.1038/s41388-019-0763-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 7.3] [Reference Citation Analysis]
96 Hernandez-Valladares M, Wangen R, Berven FS, Guldbrandsen A. Protein Post-Translational Modification Crosstalk in Acute Myeloid Leukemia Calls for Action. Curr Med Chem 2019;26:5317-37. [PMID: 31241430 DOI: 10.2174/0929867326666190503164004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
97 Yao T, Przybyla JJ, Yeh P, Woodard AM, Nilsson HJ, Brandsen BM, Silverman SK. DNAzymes for amine and peptide lysine acylation. Org Biomol Chem 2021;19:171-81. [PMID: 33150349 DOI: 10.1039/d0ob02015j] [Reference Citation Analysis]
98 Wang JM, Lin SR, Zhu YB, Yuan J, Wang YM, Zhang Q, Xie LS, Li SH, Liu SQ, Yu SG, Wu QF. Proteomic analysis of lysine acetylation reveals that metabolic enzymes and heat shock proteins may be potential targets for DSS-induced mice colitis. Int Immunopharmacol 2021;101:108336. [PMID: 34768127 DOI: 10.1016/j.intimp.2021.108336] [Reference Citation Analysis]
99 Acevedo OA, Berrios RV, Rodríguez-Guilarte L, Lillo-Dapremont B, Kalergis AM. Molecular and Cellular Mechanisms Modulating Trained Immunity by Various Cell Types in Response to Pathogen Encounter. Front Immunol 2021;12:745332. [PMID: 34671359 DOI: 10.3389/fimmu.2021.745332] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Liu L, Wang H, Rao X, Yu Y, Li W, Zheng P, Zhao L, Zhou C, Pu J, Yang D, Fang L, Ji P, Song J, Wei H, Xie P. Comprehensive analysis of the lysine acetylome and succinylome in the hippocampus of gut microbiota-dysbiosis mice. J Adv Res 2021;30:27-38. [PMID: 34026284 DOI: 10.1016/j.jare.2020.12.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
101 Zhang X, Jiang L, Huang K, Fang C, Li J, Yang J, Li H, Ruan X, Wang P, Mo M, Wu P, Xu Y, Peng C, Uesugi M, Ye D, Yu FX, Zhou L. Site-Selective Phosphoglycerate Mutase 1 Acetylation by a Small Molecule. ACS Chem Biol 2020;15:632-9. [PMID: 32069008 DOI: 10.1021/acschembio.9b00962] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
102 Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Molecular Aspects of Medicine 2022. [DOI: 10.1016/j.mam.2022.101097] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Jung TY, Ryu JE, Jang MM, Lee SY, Jin GR, Kim CW, Lee CY, Kim H, Kim E, Park S, Lee S, Lee C, Kim W, Kim T, Lee SY, Ju BG, Kim HS. Naa20, the catalytic subunit of NatB complex, contributes to hepatocellular carcinoma by regulating the LKB1-AMPK-mTOR axis. Exp Mol Med 2020;52:1831-44. [PMID: 33219302 DOI: 10.1038/s12276-020-00525-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
104 Shanmugam MK, Dharmarajan A, Warrier S, Bishayee A, Kumar AP, Sethi G, Ahn KS. Role of histone acetyltransferase inhibitors in cancer therapy. Adv Protein Chem Struct Biol 2021;125:149-91. [PMID: 33931138 DOI: 10.1016/bs.apcsb.2020.08.002] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
105 Xu JY, Zhao L, Xu Y, Li B, Zhai L, Tan M, Ye BC. Dynamic Characterization of Protein and Posttranslational Modification Levels in Mycobacterial Cholesterol Catabolism. mSystems 2020;5:e00424-19. [PMID: 31911463 DOI: 10.1128/mSystems.00424-19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
106 Wei X, Xiao B, Wang L, Zang L, Che F. Potential new targets and drugs related to histone modifications in glioma treatment. Bioorg Chem 2021;112:104942. [PMID: 33965781 DOI: 10.1016/j.bioorg.2021.104942] [Reference Citation Analysis]
107 Dai Y, Wei T, Shen Z, Bei Y, Lin H, Dai H. Classical HDACs in the regulation of neuroinflammation. Neurochem Int 2021;150:105182. [PMID: 34509559 DOI: 10.1016/j.neuint.2021.105182] [Reference Citation Analysis]
108 Liang J, Wang H, Zeng Y, Qu Y, Liu Q, Zhao F, Duan J, Jiang Y, Li S, Ying J, Li J, Mu D. Physical exercise promotes brain remodeling by regulating epigenetics, neuroplasticity and neurotrophins. Rev Neurosci 2021;32:615-29. [PMID: 33583156 DOI: 10.1515/revneuro-2020-0099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
109 Kurohara T, Tanaka K, Takahashi D, Ueda S, Yamashita Y, Takada Y, Takeshima H, Yu S, Itoh Y, Hase K, Suzuki T. Identification of Novel Histone Deacetylase 6-Selective Inhibitors Bearing 3,3,3-Trifluorolactic Amide (TFLAM) Motif as a Zinc Binding Group. Chembiochem 2021. [PMID: 34224197 DOI: 10.1002/cbic.202100255] [Reference Citation Analysis]
110 Miller GM, Flynn EM, Tom J, Song A, Cochran AG. Trifluoroacetyl Lysine as a Bromodomain Binding Mimic of Lysine Acetylation. ACS Chem Biol 2022;17:1022-9. [PMID: 35467836 DOI: 10.1021/acschembio.2c00016] [Reference Citation Analysis]
111 Moltrasio C, Romagnuolo M, Marzano AV. Epigenetic Mechanisms of Epidermal Differentiation. Int J Mol Sci 2022;23:4874. [PMID: 35563264 DOI: 10.3390/ijms23094874] [Reference Citation Analysis]
112 Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Seminars in Cancer Biology 2020. [DOI: 10.1016/j.semcancer.2020.11.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
113 Monzani E, Nicolis S, Dell'Acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L. Dopamine, Oxidative Stress and Protein-Quinone Modifications in Parkinson's and Other Neurodegenerative Diseases. Angew Chem Int Ed Engl 2019;58:6512-27. [PMID: 30536578 DOI: 10.1002/anie.201811122] [Cited by in Crossref: 73] [Cited by in F6Publishing: 56] [Article Influence: 24.3] [Reference Citation Analysis]
114 You H, Li Q, Kong D, Liu X, Kong F, Zheng K, Tang R. The interaction of canonical Wnt/β-catenin signaling with protein lysine acetylation. Cell Mol Biol Lett 2022;27:7. [PMID: 35033019 DOI: 10.1186/s11658-021-00305-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Liu Q, Yang L, She Y, Hu Y. Efficient AuPd@GO-based electrochemical nanoprobe for sensitive detection of histone acetylase activity and its inhibitor. Anal Bioanal Chem 2019;411:7327-36. [PMID: 31520170 DOI: 10.1007/s00216-019-02112-6] [Reference Citation Analysis]
116 Yoo M, Park TH, Yoo M, Kim Y, Lee JY, Lee KM, Ryu SE, Lee BI, Jung KY, Park CH. Synthesis and Structure-Activity Relationships of Aristoyagonine Derivatives as Brd4 Bromodomain Inhibitors with X-ray Co-Crystal Research. Molecules 2021;26:1686. [PMID: 33802888 DOI: 10.3390/molecules26061686] [Reference Citation Analysis]
117 Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A, Anurag M, Miles G, Mertins P, Geffen Y, Tang LC, Heiman DI, Cao S, Maruvka YE, Lei JT, Huang C, Kothadia RB, Colaprico A, Birger C, Wang J, Dou Y, Wen B, Shi Z, Liao Y, Wiznerowicz M, Wyczalkowski MA, Chen XS, Kennedy JJ, Paulovich AG, Thiagarajan M, Kinsinger CR, Hiltke T, Boja ES, Mesri M, Robles AI, Rodriguez H, Westbrook TF, Ding L, Getz G, Clauser KR, Fenyö D, Ruggles KV, Zhang B, Mani DR, Carr SA, Ellis MJ, Gillette MA; Clinical Proteomic Tumor Analysis Consortium. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell 2020;183:1436-1456.e31. [PMID: 33212010 DOI: 10.1016/j.cell.2020.10.036] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 14.5] [Reference Citation Analysis]
118 Fiorentino F, Mai A, Rotili D. Lysine Acetyltransferase Inhibitors From Natural Sources. Front Pharmacol 2020;11:1243. [PMID: 32903408 DOI: 10.3389/fphar.2020.01243] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
119 Luparello C, Mauro M, Arizza V, Vazzana M. Histone Deacetylase Inhibitors from Marine Invertebrates. Biology (Basel) 2020;9:E429. [PMID: 33260710 DOI: 10.3390/biology9120429] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
120 Jiang S, Liu Y, Shen Z, Zhou B, Shen QW. Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat. J Proteomics 2019;205:103412. [PMID: 31176012 DOI: 10.1016/j.jprot.2019.103412] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
121 Christensen DG, Baumgartner JT, Xie X, Jew KM, Basisty N, Schilling B, Kuhn ML, Wolfe AJ. Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. mBio 2019;10:e02708-18. [PMID: 30967470 DOI: 10.1128/mBio.02708-18] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
122 Dang F, Wei W. Targeting the acetylation signaling pathway in cancer therapy. Semin Cancer Biol 2021:S1044-579X(21)00051-1. [PMID: 33705871 DOI: 10.1016/j.semcancer.2021.03.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
123 Ramesh M, Gopinath P, Govindaraju T. Role of Post-translational Modifications in Alzheimer's Disease. Chembiochem 2020;21:1052-79. [PMID: 31863723 DOI: 10.1002/cbic.201900573] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
124 Zhao Y, Han Y, Sun Y, Wei Z, Chen J, Niu X, An Q, Zhang L, Qi R, Gao X. Comprehensive Succinylome Profiling Reveals the Pivotal Role of Lysine Succinylation in Energy Metabolism and Quorum Sensing of Staphylococcus epidermidis. Front Microbiol 2020;11:632367. [PMID: 33597936 DOI: 10.3389/fmicb.2020.632367] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
125 Baldensperger T, Sanzo SD, Ori A, Glomb MA. Quantitation of Reactive Acyl-CoA Species Mediated Protein Acylation by HPLC-MS/MS. Anal Chem 2019;91:12336-43. [PMID: 31503451 DOI: 10.1021/acs.analchem.9b02656] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
126 Jing Y, Bergholtz SE, Omole A, Kulkarni RA, Zengeya TT, Yoo E, Meier JL. Synthesis and Evaluation of a Stable Isostere of Malonyllysine*. Chembiochem 2021. [PMID: 34652056 DOI: 10.1002/cbic.202100491] [Reference Citation Analysis]
127 Wang ZA, Whedon SD, Wu M, Wang S, Brown EA, Anmangandla A, Regan L, Lee K, Du J, Hong JY, Fairall L, Kay T, Lin H, Zhao Y, Schwabe JWR, Cole PA. Histone H2B Deacylation Selectivity: Exploring Chromatin's Dark Matter with an Engineered Sortase. J Am Chem Soc 2022. [PMID: 35175758 DOI: 10.1021/jacs.1c13555] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
128 Yang Y, Zhang H, Guo Z, Zou S, Long F, Wu J, Li P, Zhao GP, Zhao W. Global Insights Into Lysine Acylomes Reveal Crosstalk Between Lysine Acetylation and Succinylation in Streptomyces coelicolor Metabolic Pathways. Mol Cell Proteomics 2021;20:100148. [PMID: 34530157 DOI: 10.1016/j.mcpro.2021.100148] [Reference Citation Analysis]
129 Hu M, He F, Thompson EW, Ostrikov KK, Dai X. Lysine Acetylation, Cancer Hallmarks and Emerging Onco-Therapeutic Opportunities. Cancers (Basel) 2022;14:346. [PMID: 35053509 DOI: 10.3390/cancers14020346] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
130 Lv J, Li S, Liu Y, Sun Z, Wang D, You Z, Jiang C, Sheng Q, Nie Z. The acetylation modification regulates the stability of Bm30K-15 protein and its mechanism in silkworm, Bombyx mori. Arch Insect Biochem Physiol 2021;107:e21823. [PMID: 34075635 DOI: 10.1002/arch.21823] [Reference Citation Analysis]
131 Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. Mol Ther Nucleic Acids 2021;23:1136-60. [PMID: 33664994 DOI: 10.1016/j.omtn.2021.01.024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
132 Toro TB, Watt TJ. Critical review of non-histone human substrates of metal-dependent lysine deacetylases. FASEB J 2020;34:13140-55. [PMID: 32862458 DOI: 10.1096/fj.202001301RR] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Xu H, Wu M, Ma X, Huang W, Xu Y. Function and Mechanism of Novel Histone Posttranslational Modifications in Health and Disease. Biomed Res Int 2021;2021:6635225. [PMID: 33763479 DOI: 10.1155/2021/6635225] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Wang ZA, Millard CJ, Lin CL, Gurnett JE, Wu M, Lee K, Fairall L, Schwabe JW, Cole PA. Diverse nucleosome Site-Selectivity among histone deacetylase complexes. Elife 2020;9:e57663. [PMID: 32501215 DOI: 10.7554/eLife.57663] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
135 Xu L, Zhang Q, Hu Y, Ma S, Hu D, Wang J, Rao J, Guo Z, Wang S, Wu D, Liu Q, Peng J. Ultrasensitive mushroom-like electrochemical immunosensor for probing the activity of histone acetyltransferase. Anal Chim Acta 2019;1066:28-35. [PMID: 31027532 DOI: 10.1016/j.aca.2019.03.047] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
136 Agouridas V, El Mahdi O, Melnyk O. Chemical Protein Synthesis in Medicinal Chemistry. J Med Chem 2020;63:15140-52. [PMID: 33236900 DOI: 10.1021/acs.jmedchem.0c01082] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
137 Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021;121:7178-248. [PMID: 33821625 DOI: 10.1021/acs.chemrev.0c01108] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]