BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022;122:11287-368. [PMID: 35594413 DOI: 10.1021/acs.chemrev.1c00965] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Wu Q, Huang SY. HCovDock: an efficient docking method for modeling covalent protein-ligand interactions. Brief Bioinform 2023;24:bbac559. [PMID: 36573474 DOI: 10.1093/bib/bbac559] [Reference Citation Analysis]
2 Matsuzaka Y, Yashiro R. In Silico Protein Structure Analysis for SARS-CoV-2 Vaccines Using Deep Learning. BioMedInformatics 2023;3:54-72. [DOI: 10.3390/biomedinformatics3010004] [Reference Citation Analysis]
3 Mihaylova A, Lesichkova S, Baleva M, Nikolova-Vlahova M, Kundurzhiev T, Kolevski A, Naumova E. Durability of humoral and cell-mediated immune response after SARS-CoV-2 mRNA vaccine administration. J Med Virol 2023;95:e28360. [PMID: 36448089 DOI: 10.1002/jmv.28360] [Reference Citation Analysis]
4 Mousavi H, Zeynizadeh B, Rimaz M. Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3–d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Bioorganic Chemistry 2023. [DOI: 10.1016/j.bioorg.2023.106390] [Reference Citation Analysis]
5 Masson P, Lushchekina S. Conformational Stability and Denaturation Processes of Proteins Investigated by Electrophoresis under Extreme Conditions. Molecules 2022;27:6861. [DOI: 10.3390/molecules27206861] [Reference Citation Analysis]
6 Parise A, Ciardullo G, Prejanò M, Lande A, Marino T. On the Recognition of Natural Substrate CTP and Endogenous Inhibitor ddhCTP of SARS-CoV-2 RNA-Dependent RNA Polymerase: A Molecular Dynamics Study. J Chem Inf Model 2022. [PMID: 36219674 DOI: 10.1021/acs.jcim.2c01002] [Reference Citation Analysis]
7 Qiu Y, Wei GW. CLADE 2.0: Evolution-Driven Cluster Learning-Assisted Directed Evolution. J Chem Inf Model 2022. [PMID: 36154171 DOI: 10.1021/acs.jcim.2c01046] [Reference Citation Analysis]
8 Lai G, Liu H, Deng J, Li K, Xie B. A Novel 3-Gene Signature for Identifying COVID-19 Patients Based on Bioinformatics and Machine Learning. Genes 2022;13:1602. [DOI: 10.3390/genes13091602] [Reference Citation Analysis]
9 Barroso da Silva FL, Giron CC, Laaksonen A. Electrostatic Features for the Receptor Binding Domain of SARS-COV-2 Wildtype and Its Variants. Compass to the Severity of the Future Variants with the Charge-Rule. J Phys Chem B 2022. [PMID: 36066414 DOI: 10.1021/acs.jpcb.2c04225] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Nguyen HL, Thai NQ, Nguyen PH, Li MS. SARS-CoV-2 Omicron Variant Binds to Human Cells More Strongly than the Wild Type: Evidence from Molecular Dynamics Simulation. J Phys Chem B 2022;126:4669-78. [PMID: 35723978 DOI: 10.1021/acs.jpcb.2c01048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
11 Barroso da Silva FL, Giron CC, Laaksonen A. Electrostatic features for the Receptor binding domain of SARS-COV-2 wildtype and its variants. Compass to the severity of the future variants with the charge-rule.. [DOI: 10.1101/2022.06.16.496458] [Reference Citation Analysis]