BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang X, Zhang Y, Wu J, Zhang Z, Liao Q, Kang Z, Zhang Y. Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chem Rev 2021. [PMID: 34788542 DOI: 10.1021/acs.chemrev.1c00505] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 23.0] [Reference Citation Analysis]
Number Citing Articles
1 Wahid F, Ali S, Ismail PM, Raziq F, Ali S, Yi J, Qiao L. Metal single atom doped 2D materials for photocatalysis: current status and future perspectives. Prog Energy 2023;5:012001. [DOI: 10.1088/2516-1083/ac9eff] [Reference Citation Analysis]
2 Dong X, Jia Y, Zhang M, Ji S, Leng L, Hugh Horton J, Xu C, He C, Tan Q, Zhang J, Li Z. Molten salt-induction of geometrically deformed ruthenium single atom catalysts with high performance for aerobic oxidation of alcohols. Chemical Engineering Journal 2023;451:138660. [DOI: 10.1016/j.cej.2022.138660] [Reference Citation Analysis]
3 Zhang H, Xu H, Wang L, Ouyang C, Liang H, Zhong S. A Metal–Organic Frameworks Derived 1T‐MoS 2 with Expanded Layer Spacing for Enhanced Electrocatalytic Hydrogen Evolution. Small 2022. [DOI: 10.1002/smll.202205736] [Reference Citation Analysis]
4 Nguyen HTT, Adofo LA, Yang S, Kim H, Choi SH, Kirubasankar B, Cho BW, Ben‐smith A, Kang J, Kim Y, Kim SM, Han Y, Kim KK. 1T’ Re x Mo 1− x S 2 –2H MoS 2 Lateral Heterojunction for Enhanced Hydrogen Evolution Reaction Performance. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202209572] [Reference Citation Analysis]
5 Lin X, Ng S, Ong W. Coordinating single-atom catalysts on two-dimensional nanomaterials: A paradigm towards bolstered photocatalytic energy conversion. Coordination Chemistry Reviews 2022;471:214743. [DOI: 10.1016/j.ccr.2022.214743] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Hou H, Anichini C, Samorì P, Criado A, Prato M. 2D Van der Waals Heterostructures for Chemical Sensing. Adv Funct Materials. [DOI: 10.1002/adfm.202207065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hrubý V, Zaoralová D, Medveď M, Bakandritsos A, Zbořil R, Otyepka M. Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts. Nanoscale 2022;14:13490-9. [PMID: 36070404 DOI: 10.1039/d2nr03453k] [Reference Citation Analysis]
8 Mitchell BS, Chirila A, Kephart JA, Boggiano AC, Krajewski SM, Rogers D, Kaminsky W, Velian A. Metal-Support Interactions in Molecular Single-Site Cluster Catalysts. J Am Chem Soc 2022. [PMID: 36170652 DOI: 10.1021/jacs.2c07033] [Reference Citation Analysis]
9 Kang Z, Liao Q, Zhang Z, Zhang Y. Carbon neutrality orientates the reform of the steel industry. Nat Mater 2022. [PMID: 36151464 DOI: 10.1038/s41563-022-01370-7] [Reference Citation Analysis]
10 Liu Z, Sun L, Zhang Q, Teng Z, Sun H, Su C. TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application. Chem Res Chin Univ . [DOI: 10.1007/s40242-022-2224-5] [Reference Citation Analysis]
11 Ma K, Wu J, Wang X, Sun Y, Xiong Z, Dai F, Bai H, Xie Y, Kang Z, Zhang Y. Periodically Interrupting Bonding Behavior to Reformat Delocalized Electronic States of Graphdiyne for Improved Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed 2022. [DOI: 10.1002/anie.202211094] [Reference Citation Analysis]
12 Li Q, Feng Z, Wang D. Theoretical Study on the Electrochemical Water Splitting of Two-Dimensional Metal–Organic Frameworks TM3C12O12 (TM = Mn, Fe, Co, Ni). Crystals 2022;12:1289. [DOI: 10.3390/cryst12091289] [Reference Citation Analysis]
13 Feng Z, Ma T, Li R, Zhu M, Shi D, Tang Y, Dai X. Electrochemical nitrogen reduction reaction on the precise number of Mo atoms anchored biphenylene. Molecular Catalysis 2022;530:112579. [DOI: 10.1016/j.mcat.2022.112579] [Reference Citation Analysis]
14 Cheng H, Wang S, Chen G, Liu Z, Caracciolo D, Madiou M, Shan S, Zhang J, He H, Che R, Zhong C. Insights into Heterogeneous Catalysts under Reaction Conditions by In Situ/Operando Electron Microscopy. Advanced Energy Materials. [DOI: 10.1002/aenm.202202097] [Reference Citation Analysis]
15 Lei G, Pan H, Mei H, Liu X, Lu G, Lou C, Li Z, Zhang J. Emerging single atom catalysts in gas sensors. Chem Soc Rev 2022. [PMID: 35899763 DOI: 10.1039/d2cs00257d] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Yang S, Liu X, Niu F, Wang L, Su K, Liu W, Dong H, Yue H, Yin Y. 2D Single-Atom Fe–N–C Catalyst Derived from a Layered Complex as an Oxygen Reduction Catalyst for PEMFCs. ACS Appl Energy Mater 2022;5:8791-9. [DOI: 10.1021/acsaem.2c01290] [Reference Citation Analysis]
17 Lian T, Li X, Wang Y, Zhu S, Yang X, Liu Z, Ye C, Liu J, Li Y, Su B, Chen L. Boosting Highly Active Exposed Mo Atoms by Fine-Tuning S-Vacancies of MoS2-Based Materials for Efficient Hydrogen Evolution. ACS Appl Mater Interfaces 2022;14:30746-59. [PMID: 35767388 DOI: 10.1021/acsami.2c05444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Li R, Wang D. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res . [DOI: 10.1007/s12274-022-4371-x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 86] [Article Influence: 57.0] [Reference Citation Analysis]
19 Zhou C, Li M, Hu N, Yang J, Li H, Yan J, Lei P, Zhuang Y, Guo S. Single‐Atom‐Regulated Heterostructure of Binary Nanosheets to Enable Dendrite‐Free and Kinetics‐Enhanced Li–S Batteries. Adv Funct Materials. [DOI: 10.1002/adfm.202204635] [Reference Citation Analysis]
20 Hu G, He J, Li Y. Controllable Synthesis of Two-Dimensional Graphdiyne Films Catalyzed by a Copper(II) Trichloro Complex. ACS Catal 2022;12:6712-21. [DOI: 10.1021/acscatal.1c05967] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Guo Y, Li Y, Du X, Li L, Jiang Q, Qiao B. Pd single-atom catalysts derived from strong metal-support interaction for selective hydrogenation of acetylene. Nano Res . [DOI: 10.1007/s12274-022-4376-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 He T, Puente‐santiago AR, Xia S, Ahsan MA, Xu G, Luque R. Experimental and Theoretical Advances on Single Atom and Atomic Cluster‐Decorated Low‐Dimensional Platforms towards Superior Electrocatalysts. Advanced Energy Materials. [DOI: 10.1002/aenm.202200493] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
23 Lunardon M, Cattelan M, Agnoli S, Granozzi G. Toward sustainable and effective HER electrocatalysts: strategies for the basal plane site activation of transition metal dichalcogenides. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.101025] [Reference Citation Analysis]
24 Jiang L, Zhou Q, Li J, Xia Y, Li H, Li Y. Engineering Isolated S Vacancies over 2D MoS 2 Basal Planes for Catalytic Hydrogen Evolution. ACS Appl Nano Mater 2022;5:3521-30. [DOI: 10.1021/acsanm.1c04151] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Xia H, Shi Z, Gong C, He Y. Recent strategies for activating the basal planes of transition metal dichalcogenides towards hydrogen production. J Mater Chem A. [DOI: 10.1039/d2ta02458f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]