1 |
Yang S, Wang F, Han H, Santos HA, Zhang Y, Zhang H, Wei J, Cai Z. Fabricated technology of biomedical micro-nano hydrogel. Biomedical Technology 2023;2:31-48. [DOI: 10.1016/j.bmt.2022.11.012] [Reference Citation Analysis]
|
2 |
Wu W, Xia S, Liu Y, Ma C, Lyu Z, Zhao M, Ding S, Hu Q. Single-atom catalysts with peroxidase-like activity boost gel-sol transition-based biosensing. Biosens Bioelectron 2023;225:115112. [PMID: 36731398 DOI: 10.1016/j.bios.2023.115112] [Reference Citation Analysis]
|
3 |
Castañeda-Rodríguez S, González-Torres M, Ribas-Aparicio RM, Del Prado-Audelo ML, Leyva-Gómez G, Gürer ES, Sharifi-Rad J. Recent advances in modified poly (lactic acid) as tissue engineering materials. J Biol Eng 2023;17:21. [PMID: 36941601 DOI: 10.1186/s13036-023-00338-8] [Reference Citation Analysis]
|
4 |
An C, Li H, Zhao Y, Zhang S, Zhao Y, Zhang Y, Yang J, Zhang L, Ren C, Zhang Y, Liu J, Wang H. Hyaluronic acid-based multifunctional carriers for applications in regenerative medicine: A review. Int J Biol Macromol 2023;231:123307. [PMID: 36652984 DOI: 10.1016/j.ijbiomac.2023.123307] [Reference Citation Analysis]
|
5 |
Tang M, Zhong Z, Ke C. Advanced supramolecular design for direct ink writing of soft materials. Chem Soc Rev 2023;52:1614-49. [PMID: 36779285 DOI: 10.1039/d2cs01011a] [Reference Citation Analysis]
|
6 |
Zhu H, Wu X, Liu R, Zhao Y, Sun L. ECM-Inspired Hydrogels with ADSCs Encapsulation for Rheumatoid Arthritis Treatment. Adv Sci (Weinh) 2023;10:e2206253. [PMID: 36683217 DOI: 10.1002/advs.202206253] [Reference Citation Analysis]
|
7 |
Ow V, Chang JJ, Chooi WH, Boo YJ, Tan RPT, Wong JHM, Parikh BH, Su X, Ng SY, Loh XJ, Xue K. Orthogonally crosslinked alginate conjugate thermogels with potential for cell encapsulation. Carbohydr Polym 2023;302:120308. [PMID: 36604036 DOI: 10.1016/j.carbpol.2022.120308] [Reference Citation Analysis]
|
8 |
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023;:1-32. [PMID: 36763330 DOI: 10.1007/s13346-023-01290-2] [Reference Citation Analysis]
|
9 |
Yang J, Wang S. Polysaccharide-Based Multifunctional Hydrogel Bio-Adhesives for Wound Healing: A Review. Gels 2023;9. [PMID: 36826308 DOI: 10.3390/gels9020138] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023;24. [PMID: 36834596 DOI: 10.3390/ijms24043188] [Reference Citation Analysis]
|
11 |
Bassan R, Varshney M, Roy S. An Amino Acid‐Based Thixotropic Hydrogel: Tuning of Gel Recovery Time by Mechanical Shaking. ChemistrySelect 2023;8. [DOI: 10.1002/slct.202203317] [Reference Citation Analysis]
|
12 |
Mei M, Du P, Li W, Xu L, Wang T, Liu J, Chen S, Li J. Amino-functionalization of lignocellulosic biopolymer to be used as a green and sustainable adsorbent for anionic contaminant removal. Int J Biol Macromol 2023;227:1271-81. [PMID: 36464187 DOI: 10.1016/j.ijbiomac.2022.11.322] [Reference Citation Analysis]
|
13 |
Wang A, Li H, Feng H, Qiu H, Huang R, Wang Y, Ji S, Liang H, Shen XC, Jiang BP. In Situ Polymerization of Aniline Derivative in Vivo for NIR-II Phototheranostics of Tumor. ACS Appl Mater Interfaces 2023;15:5870-82. [PMID: 36689577 DOI: 10.1021/acsami.2c19927] [Reference Citation Analysis]
|
14 |
Wang Z, Lu J, Yuan Z, Pi W, Huang X, Lin X, Zhang Y, Lei H, Wang P. Natural Carrier-Free Binary Small Molecule Self-Assembled Hydrogel Synergize Antibacterial Effects and Promote Wound Healing by Inhibiting Virulence Factors and Alleviating the Inflammatory Response. Small 2023;19:e2205528. [PMID: 36446719 DOI: 10.1002/smll.202205528] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Ming J, Sun Y, Chen Y, Wang Q, Li J. Novel Lipase Reactor based on Discontinuous Interfaces in Hydrogel-Organogel Hybrid Gel: A Preliminary Exploration. J Agric Food Chem 2023;71:2113-23. [PMID: 36688519 DOI: 10.1021/acs.jafc.2c07472] [Reference Citation Analysis]
|
16 |
Gieroba B, Kalisz G, Krysa M, Khalavka M, Przekora A. Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process. Int J Mol Sci 2023;24. [PMID: 36768949 DOI: 10.3390/ijms24032630] [Reference Citation Analysis]
|
17 |
Muir VG, Weintraub S, Dhand AP, Fallahi H, Han L, Burdick JA. Influence of Microgel and Interstitial Matrix Compositions on Granular Hydrogel Composite Properties. Adv Sci (Weinh) 2023;:e2206117. [PMID: 36717272 DOI: 10.1002/advs.202206117] [Reference Citation Analysis]
|
18 |
Locke RC, Zlotnick HM, Stoeckl BD, Fryhofer GW, Galarraga JH, Dhand AP, Zgonis MH, Carey JL, Burdick JA, Mauck RL. Linguistic Analysis Identifies Emergent Biomaterial Fabrication Trends for Orthopaedic Applications. Adv Healthc Mater 2023;:e2202591. [PMID: 36657736 DOI: 10.1002/adhm.202202591] [Reference Citation Analysis]
|
19 |
Li J, Ma C, Zhang H, Liu K. Engineering Mechanical Strong Biomaterials Inspired by Structural Building Blocks in Nature. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2357-1] [Reference Citation Analysis]
|
20 |
Pirayesh H, Park B, Khanjanzadeh H, Park H, Cho Y. Cellulosic material-based colorimetric films and hydrogels as food freshness indicators. Cellulose 2023. [DOI: 10.1007/s10570-023-05057-3] [Reference Citation Analysis]
|
21 |
Kort-Mascort J, Flores-Torres S, Peza-Chavez O, Jang JH, Pardo LA, Tran SD, Kinsella J. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater Sci 2023;11:400-31. [PMID: 36484344 DOI: 10.1039/d2bm01273a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Nurkolis F, Taslim NA, Hardinsyah H, Mayulu N, Khumaidi MA, Gunawan WB, Joseph VFF, Herlambang B, Hendra IW, Tanjaya K, Nojaid A, Yusuf VM, Permatasari HK, Samtiya M, Tallei TE. Algal-derived macromolecules and their composites: From synthetic biology to biomedical applications in bone and cardiovascular tissue engineering. F1000Res 2023;12:65. [DOI: 10.12688/f1000research.129725.1] [Reference Citation Analysis]
|
23 |
Galarraga JH, Dhand AP, Enzmann BP 3rd, Burdick JA. Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel. Biomacromolecules 2023;24:413-25. [PMID: 36516973 DOI: 10.1021/acs.biomac.2c01218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
24 |
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. Nano Res 2023. [DOI: 10.1007/s12274-022-5129-1] [Reference Citation Analysis]
|
25 |
Cohen E, Avram L, Poverenov E. Formation of Robust and Adaptive Biopolymers via Non-Covalent Supramolecular Interactions. Macromol Rapid Commun 2023;44:e2200579. [PMID: 36153845 DOI: 10.1002/marc.202200579] [Reference Citation Analysis]
|
26 |
Gericke M, Skodda LH, Heinze T. Reactive xylan derivatives for azid-/alkyne-click-chemistry approaches — From modular synthesis to gel-formation. Carbohydrate Polymers 2023;300:120251. [DOI: 10.1016/j.carbpol.2022.120251] [Reference Citation Analysis]
|
27 |
Gao M, Zhao R, Kang B, Zhao Z, Song S. High-performance ionic conductive double-network hydrogel enabling a long-term flexible strain sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023. [DOI: 10.1016/j.colsurfa.2023.131051] [Reference Citation Analysis]
|
28 |
Aldana AA, Bauer J, Baker MB. Synthetic biomaterials. Tissue Engineering 2023. [DOI: 10.1016/b978-0-12-824459-3.00006-8] [Reference Citation Analysis]
|
29 |
Wang W, Dai J, Huang Y, Li X, Yang J, Zheng Y, Shi X. Extracellular Matrix Mimicking Dynamic Interpenetrating Network Hydrogel for Skin Tissue Engineering. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141362] [Reference Citation Analysis]
|
30 |
Abookleesh F, Ullah A. Chemical modification of protein-based biopolymers for application in food packaging. Advanced Applications of Biobased Materials 2023. [DOI: 10.1016/b978-0-323-91677-6.00008-8] [Reference Citation Analysis]
|
31 |
Raina N, Pahwa R, Thakur VK, Gupta M. Polysaccharide-based hydrogels: New insights and futuristic prospects in wound healing. Int J Biol Macromol 2022;223:1586-603. [PMID: 36395945 DOI: 10.1016/j.ijbiomac.2022.11.115] [Reference Citation Analysis]
|
32 |
Mirzaei A, Esmkhani M, Zallaghi M, Nezafat Z, Javanshir S. Biomedical and Environmental Applications of Carrageenan-Based Hydrogels: A Review. J Polym Environ 2022. [DOI: 10.1007/s10924-022-02726-5] [Reference Citation Analysis]
|
33 |
Wu T, Zhao K, Zhang C, Zhong T, Li Z, Bao Z, Gao Y, Du F. Promising Delivery Platform for Smart Pest Control with High Water-Retaining Capacity. ACS Appl Mater Interfaces 2022. [PMID: 36472305 DOI: 10.1021/acsami.2c15737] [Reference Citation Analysis]
|
34 |
Yan S, Hu K, Chen S, Li T, Zhang W, Yin J, Jiang X. Photo-induced stress relaxation in reconfigurable disulfide-crosslinked supramolecular films visualized by dynamic wrinkling. Nat Commun 2022;13:7434. [PMID: 36460720 DOI: 10.1038/s41467-022-35271-9] [Reference Citation Analysis]
|
35 |
Yang Q, Zhao J, Muhammad A, Tian L, Liu Y, Chen L, Yang P. Biopolymer coating for particle surface engineering and their biomedical applications. Materials Today Bio 2022;16:100407. [DOI: 10.1016/j.mtbio.2022.100407] [Reference Citation Analysis]
|
36 |
Shen J, Dai Y, Xia F, Zhang X. Role of divalent metal ions in the function and application of hydrogels. Progress in Polymer Science 2022;135:101622. [DOI: 10.1016/j.progpolymsci.2022.101622] [Reference Citation Analysis]
|
37 |
Uslu E, Rana VK, Anagnostopoulos S, Karami P, Bergadano A, Courbon C, Gorostidi F, Sandu K, Stergiopulos N, Pioletti DP. Wet Adhesive Hydrogels to Correct Malacic Trachea (Tracheomalacia): A Proof of Concept.. [DOI: 10.1101/2022.11.29.518329] [Reference Citation Analysis]
|
38 |
Biswas S, Lee Y, Choi H, Kim H. Current Development in Bio-implantable Sensors. KSS 2022;31:403-410. [DOI: 10.46670/jsst.2022.31.6.403] [Reference Citation Analysis]
|
39 |
Duceac IA, Stanciu MC, Nechifor M, Tanasă F, Teacă CA. Insights on Some Polysaccharide Gel Type Materials and Their Structural Peculiarities. Gels 2022;8. [PMID: 36547295 DOI: 10.3390/gels8120771] [Reference Citation Analysis]
|
40 |
Wu X, Qiu Y, Chen C, Gao Y, Wang Y, Yao F, Zhang H, Li J. Polysaccharide-Derived Ice Recrystallization Inhibitors with a Modular Design: The Case of Dextran-Based Graft Polymers. Langmuir 2022;38:14097-108. [PMID: 36342971 DOI: 10.1021/acs.langmuir.2c02032] [Reference Citation Analysis]
|
41 |
Zhao Y, Song S, Wang D, Liu H, Zhang J, Li Z, Wang J, Ren X, Zhao Y. Nanozyme-reinforced hydrogel as a H(2)O(2)-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat Commun 2022;13:6758. [PMID: 36351899 DOI: 10.1038/s41467-022-34481-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
42 |
Jing P, Luo Y, Wang L, Tan J, Chen Y, Chen Y, Zhang S. An oligomeric hyaluronic acid-GX1 molecular target drug with polyvalent targeting to CD44 and VEGF receptors. Biomaterials Advances 2022. [DOI: 10.1016/j.bioadv.2022.213217] [Reference Citation Analysis]
|
43 |
Zhang M, Chen X, Yang K, Dong Q, Yang H, Gu S, Xu W, Zhou Y. Dual-crosslinked hyaluronic acid hydrogel with self-healing capacity and enhanced mechanical properties. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120372] [Reference Citation Analysis]
|
44 |
Zou C, Li Q, Hu J, Song Y, Zhang Q, Nie R, Li-ling J, Xie H. Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Materials Today Bio 2022;17:100468. [DOI: 10.1016/j.mtbio.2022.100468] [Reference Citation Analysis]
|
45 |
Li X, Xiong Y. Application of “Click” Chemistry in Biomedical Hydrogels. ACS Omega. [DOI: 10.1021/acsomega.2c03931] [Reference Citation Analysis]
|
46 |
Caprio ND, Burdick JA. Engineered Biomaterials to Guide Spheroid Formation, Function, and Fabrication into 3D Tissue Constructs. Acta Biomater 2022:S1742-7061(22)00620-1. [PMID: 36167240 DOI: 10.1016/j.actbio.2022.09.052] [Reference Citation Analysis]
|
47 |
Ma H, Peng Y, Zhang S, Zhang Y, Min P. Effects and Progress of Photo-Crosslinking Hydrogels in Wound Healing Improvement. Gels 2022;8:609. [DOI: 10.3390/gels8100609] [Reference Citation Analysis]
|
48 |
Han Q, Wang Q, Gao A, Ge X, Wan R, Cao X. Fluorescent Quinoline-Based Supramolecular Gel for Selective and Ratiometric Sensing Zinc Ion with Multi-Modes. Gels 2022;8:605. [DOI: 10.3390/gels8100605] [Reference Citation Analysis]
|
49 |
Xia D, Liu Y, Cao W, Gao J, Wang D, Lin M, Liang C, Li N, Xu R. Dual-Functional Nanofibrous Patches for Accelerating Wound Healing. Int J Mol Sci 2022;23:10983. [PMID: 36142896 DOI: 10.3390/ijms231810983] [Reference Citation Analysis]
|
50 |
Yu Y, Zhao Y, Mi Y, Zhao Y, Guo Z, Zhang H, Wang D, Miao Z. Exploration of Optical Properties of Novel Pyrene Derivatives Modified by Click Functionalization. Crystals 2022;12:1295. [DOI: 10.3390/cryst12091295] [Reference Citation Analysis]
|
51 |
Eivazzadeh-keihan R, Sadat Z, Aghamirza Moghim Aliabadi H, Ganjali F, Kashtiaray A, Salimi Bani M, Komijani S, Ahadian MM, salehpour N, Ahangari Cohan R, Maleki A. Fabrication of a magnetic alginate-silk fibroin hydrogel, containing halloysite nanotubes as a novel nanocomposite for biological and hyperthermia applications. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-19511-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
52 |
Zhu S, Li Y, He Z, Ji L, Zhang W, Tong Y, Luo J, Yu D, Zhang Q, Bi Q. Advanced injectable hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2022;10:954501. [DOI: 10.3389/fbioe.2022.954501] [Reference Citation Analysis]
|
53 |
Wang A, Fan G, Qi H, Li H, Pang C, Zhu Z, Ji S, Liang H, Jiang BP, Shen XC. H2O2-activated in situ polymerization of aniline derivative in hydrogel for real-time monitoring and inhibition of wound bacterial infection. Biomaterials 2022;289:121798. [PMID: 36108582 DOI: 10.1016/j.biomaterials.2022.121798] [Reference Citation Analysis]
|
54 |
Abookleesh F, Mosa FES, Barakat K, Ullah A. Assessing Molecular Docking Tools to Guide the Design of Polymeric Materials Formulations: A Case Study of Canola and Soybean Protein. Polymers (Basel) 2022;14:3690. [PMID: 36080764 DOI: 10.3390/polym14173690] [Reference Citation Analysis]
|
55 |
Kim S, Lee HJ, Jeong B. Hyaluronic acid-g-PPG and PEG-PPG-PEG hybrid thermogel for prolonged gel stability and sustained drug release. Carbohydrate Polymers 2022;291:119559. [DOI: 10.1016/j.carbpol.2022.119559] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
56 |
Hu C, Yang L, Wang Y. Recent advances in smart‐responsive hydrogels for tissue repairing. MedComm – Biomaterials and Applications 2022;1. [DOI: 10.1002/mba2.23] [Reference Citation Analysis]
|
57 |
Duan A, Yang J, Wu L, Wang T, Liu Q, Liu Y. Preparation, physicochemical and application evaluation of raspberry anthocyanin and curcumin based on chitosan/starch/gelatin film. Int J Biol Macromol 2022;220:147-58. [PMID: 35963358 DOI: 10.1016/j.ijbiomac.2022.08.053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
58 |
Jafari H, Ghaffari-Bohlouli P, Niknezhad SV, Abedi A, Izadifar Z, Mohammadinejad R, Varma RS, Shavandi A. Tannic acid: a versatile polyphenol for design of biomedical hydrogels. J Mater Chem B 2022. [PMID: 35880440 DOI: 10.1039/d2tb01056a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
59 |
Ishikawa S, Yoshikawa Y, Kamata H, Chung UI, Sakai T. Simple Preparation of Injectable Hydrogels with Phase-Separated Structures That Can Encapsulate Live Cells. ACS Appl Mater Interfaces 2022. [PMID: 35881883 DOI: 10.1021/acsami.2c09906] [Reference Citation Analysis]
|
60 |
Wu B, Feng E, Liao Y, Liu H, Tang R, Tan Y. Brush-Modified Hydrogels: Preparations, Properties, and Applications. Chem Mater . [DOI: 10.1021/acs.chemmater.2c01666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
61 |
Hamidi M, Jafari H, Siminska-Stanny J, Okoro OV, Fatimi A, Shavandi A. Anionic exopolysaccharide from Cryptococcus laurentii 70766 as an alternative for alginate for biomedical hydrogels. Int J Biol Macromol 2022;212:370-80. [PMID: 35613678 DOI: 10.1016/j.ijbiomac.2022.05.133] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
62 |
Hu Z, Cao W, Shen L, Sun Z, Yu K, Zhu Q, Ren T, Zhang L, Zheng H, Gao C, He Y, Guo C, Zhu Y, Ren D. Scalable Milk-Derived Whey Protein Hydrogel as an Implantable Biomaterial. ACS Appl Mater Interfaces 2022. [PMID: 35703017 DOI: 10.1021/acsami.2c02361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
63 |
Kang B, Yan X, Zhao Z, Song S. Dual-Sensing, Stretchable, Fatigue-Resistant, Adhesive, and Conductive Hydrogels Used as Flexible Sensors for Human Motion Monitoring. Langmuir 2022. [PMID: 35613322 DOI: 10.1021/acs.langmuir.2c00647] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
64 |
Cooke ME, Rosenzweig DH, Liu C, Ghorbani F. Editorial: Biofabrication and Biopolymeric Materials Innovation for Musculoskeletal Tissue Regeneration. Front Bioeng Biotechnol 2022;10:909577. [DOI: 10.3389/fbioe.2022.909577] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
65 |
Barakat A, Kamoun EA, El-Moslamy SH, Ghazy MB, Fahmy A. Photo-curable carboxymethylcellulose composite hydrogel as a promising biomaterial for biomedical applications. Int J Biol Macromol 2022;207:1011-21. [PMID: 35381281 DOI: 10.1016/j.ijbiomac.2022.03.201] [Reference Citation Analysis]
|
66 |
Zhang W, Wang X, Ma J, Yang R, Hu Y, Tan X, Chi B. Adaptive injectable carboxymethyl cellulose/poly (γ-glutamic acid) hydrogels promote wound healing. Biomater Adv 2022;136:212753. [PMID: 35929335 DOI: 10.1016/j.bioadv.2022.212753] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
67 |
Falcucci T, Presley KF, Choi J, Fizpatrick V, Barry J, Kishore Sahoo J, Ly JT, Grusenmeyer TA, Dalton MJ, Kaplan DL. Degradable Silk‐Based Subcutaneous Oxygen Sensors. Adv Funct Materials. [DOI: 10.1002/adfm.202202020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
68 |
Choi CE, Chakraborty A, Coyle A, Shamiya Y, Paul A. Contact-Free Remote Manipulation of Hydrogel Properties Using Light-Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications. Adv Healthc Mater 2022;11:e2102088. [PMID: 35032156 DOI: 10.1002/adhm.202102088] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
69 |
Xiao X, Huang Z, Jiang X, Yang Y, Yang L, Yang S, Niu C, Xu Y, Feng L. Facile synthesize of norbornene-hyaluronic acid to form hydrogel via thiol-norbornene reaction for biomedical application. Polymer 2022;245:124696. [DOI: 10.1016/j.polymer.2022.124696] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
70 |
Andrade del Olmo J, Sáez Martínez V, Pérez González R, María Alonso J. Sustained Drug Release from Biopolymer-Based Hydrogels and Hydrogel Coatings. Hydrogels - From Tradition to Innovative Platforms With Multiple Applications [Working Title] 2022. [DOI: 10.5772/intechopen.103946] [Reference Citation Analysis]
|
71 |
Muir VG, Qazi TH, Weintraub S, Torres Maldonado BO, Arratia PE, Burdick JA. Sticking Together: Injectable Granular Hydrogels with Increased Functionality via Dynamic Covalent Inter-Particle Crosslinking. Small 2022;:e2201115. [PMID: 35315233 DOI: 10.1002/smll.202201115] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
72 |
Zou C, Lei X, Hu J, Jiang Y, Li Q, Song Y, Zhang Q, Li-ling J, Xie H. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.02.034] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
|
73 |
Bai Q, Teng L, Zhang X, Dong CM. Multifunctional Single-Component Polypeptide Hydrogels: The Gelation Mechanism, Superior Biocompatibility, High Performance Hemostasis, and Scarless Wound Healing. Adv Healthc Mater 2022;11:e2101809. [PMID: 34865324 DOI: 10.1002/adhm.202101809] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
74 |
Li J, Wang K, Wang J, Yuan Y, Wu H. High-tough hydrogels formed via Schiff base reaction between PAMAM dendrimer and Tetra-PEG and their potential as dual-function delivery systems. Materials Today Communications 2022;30:103019. [DOI: 10.1016/j.mtcomm.2021.103019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
75 |
Qin C, Gao H, Liu X, Li X, Xie Y, Bai Y, Nie Y. The dissolution of human hair using ionic liquids through COSMO-RS predication and experimental verification. Journal of Molecular Liquids 2022;349:118094. [DOI: 10.1016/j.molliq.2021.118094] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
76 |
Qin J, Chen F, Wu P, Sun G. Recent Advances in Bioengineered Scaffolds for Cutaneous Wound Healing. Front Bioeng Biotechnol 2022;10:841583. [DOI: 10.3389/fbioe.2022.841583] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
77 |
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. Adv Sci (Weinh) 2022;9:e2104012. [PMID: 35077010 DOI: 10.1002/advs.202104012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
78 |
Charlet A, Hirsch M, Schreiber S, Amstad E. Recycling of Load-Bearing 3D Printable Double Network Granular Hydrogels. Small 2022;:e2107128. [PMID: 35174951 DOI: 10.1002/smll.202107128] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
79 |
Fan Q, Nie Y, Sun Q, Wang W, Bai L, Chen H, Yang L, Yang H, Wei D. Nanocomposite Hybrid Biomass Hydrogels as Flexible Strain Sensors with Self-Healing Ability in Harsh Environments. ACS Appl Polym Mater 2022;4:1626-35. [DOI: 10.1021/acsapm.1c01433] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
80 |
Kang B, Yan X, Tang H, Zhao Z, Song S. Freezing-Tolerant, Nondrying, Stretchable, and Adhesive Organohydrogels Inspired by the DNA Double Helix Structure for a Flexible Dual-Response Sensor. ACS Appl Polym Mater 2022;4:1159-72. [DOI: 10.1021/acsapm.1c01436] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
81 |
Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y. Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chem Rev 2022. [PMID: 35023737 DOI: 10.1021/acs.chemrev.1c00815] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 28.0] [Reference Citation Analysis]
|
82 |
Yin B, Ni J, Witherel CE, Yang M, Burdick JA, Wen C, Wong SHD. Harnessing Tissue-derived Extracellular Vesicles for Osteoarthritis Theranostics. Theranostics 2022;12:207-31. [PMID: 34987642 DOI: 10.7150/thno.62708] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 22.0] [Reference Citation Analysis]
|
83 |
DePalma TJ, Sivakumar H, Skardal A. Strategies for developing complex multi-component in vitro tumor models: Highlights in glioblastoma. Adv Drug Deliv Rev 2022;180:114067. [PMID: 34822927 DOI: 10.1016/j.addr.2021.114067] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
84 |
Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021;14:35. [PMID: 35062238 DOI: 10.3390/v14010035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
85 |
Mahmoud YA, El-Naggar ME, Abdel-Megeed A, El-Newehy M. Recent Advancements in Microbial Polysaccharides: Synthesis and Applications. Polymers (Basel) 2021;13:4136. [PMID: 34883639 DOI: 10.3390/polym13234136] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
86 |
Han J, Guo Y, Wang H, Zhang K, Yang D. Sustainable Bioplastic Made from Biomass DNA and Ionomers. J Am Chem Soc 2021;143:19486-97. [PMID: 34775757 DOI: 10.1021/jacs.1c08888] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|
87 |
Stergiou N, Urschbach M, Gabba A, Schmitt E, Kunz H, Besenius P. The Development of Vaccines from Synthetic Tumor-Associated Mucin Glycopeptides and their Glycosylation-Dependent Immune Response. Chem Rec 2021;21:3313-31. [PMID: 34812564 DOI: 10.1002/tcr.202100182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
88 |
Ensandoost R, Izadi-vasafi H, Adelnia H. Anti-Bacterial Activity of Chitosan-Alginate-Poly (Vinyl Alcohol) Hydrogel Containing Entrapped Peppermint Essential Oil. Journal of Macromolecular Science, Part B. [DOI: 10.1080/00222348.2021.1999043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
89 |
Li H, Kuang L, Li J, Zhu Y. Construction and Properties of Double‐Crosslinked Hydrogels Based on Host–Guest Interactions/UV Polymerization. Macro Materials & Eng 2021;306:2100588. [DOI: 10.1002/mame.202100588] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
90 |
Mañas-Torres MC, Gila-Vilchez C, Vazquez-Perez FJ, Kuzhir P, Momier D, Scimeca JC, Borderie A, Goracci M, Burel-Vandenbos F, Blanco-Elices C, Rodriguez IA, Alaminos M, de Cienfuegos LÁ, Lopez-Lopez MT. Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation. ACS Appl Mater Interfaces 2021;13:49692-704. [PMID: 34645258 DOI: 10.1021/acsami.1c13972] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
91 |
Prendergast ME, Davidson MD, Burdick JA. A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication 2021;13. [PMID: 34507304 DOI: 10.1088/1758-5090/ac25cc] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
92 |
Monteiro MV, Zhang YS, Gaspar VM, Mano JF. 3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends Biotechnol 2021:S0167-7799(21)00194-3. [PMID: 34556340 DOI: 10.1016/j.tibtech.2021.08.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
|
93 |
Aleman J, Sivakumar H, Depalma T, Zhou Y, Mazzocchi A, Huntwork RC, Yoo K, Banks S, Clark C, Maycock A, Leaks K, Enck K, Opara EC, Gatenholm P, Welker M, Soker S, Herberg S, Criswell T, Skardal A. Engineering a thixotropic and biochemically tunable hyaluronan and collagen bioink for biofabrication of multiple tissue construct types.. [DOI: 10.1101/2021.09.01.458584] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
94 |
Sardaru MC, Rosca I, Morariu S, Ursu EL, Ghiarasim R, Rotaru A. Injectable Thixotropic β-Cyclodextrin-Functionalized Hydrogels Based on Guanosine Quartet Assembly. Int J Mol Sci 2021;22:9179. [PMID: 34502085 DOI: 10.3390/ijms22179179] [Reference Citation Analysis]
|
95 |
Chakraborty A, Roy A, Ravi SP, Paul A. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Biomater Sci 2021. [PMID: 34397056 DOI: 10.1039/d1bm00605c] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
|
96 |
Zilberman A, Cornelison RC. Microphysiological models of the central nervous system with fluid flow. Brain Res Bull 2021;174:72-83. [PMID: 34029679 DOI: 10.1016/j.brainresbull.2021.05.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
97 |
Jin T, Liu T, Jiang S, Kurdyla D, Klein BA, Michaelis VK, Lam E, Li J, Moores A. Chitosan nanocrystals synthesis via aging and application towards alginate hydrogels for sustainable drug release. Green Chem 2021;23:6527-37. [DOI: 10.1039/d1gc01611c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
98 |
Muir VG, Burdick JA. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem Rev 2021;121:10908-49. [DOI: 10.1021/acs.chemrev.0c00923] [Cited by in Crossref: 57] [Cited by in F6Publishing: 70] [Article Influence: 19.0] [Reference Citation Analysis]
|