BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020;120:12903-93. [DOI: 10.1021/acs.chemrev.0c00472] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Simoska O, Gaffney EM, Minteer SD, Franzetti A, Cristiani P, Grattieri M, Santoro C. Recent trends and advances in microbial electrochemical sensing technologies: An overview. Current Opinion in Electrochemistry 2021;30:100762. [DOI: 10.1016/j.coelec.2021.100762] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Simoska O, Stevenson KJ. Electrochemical sensors for detection of Pseudomonas aeruginosa virulence biomarkers: Principles of design and characterization. Sensors and Actuators Reports 2022;4:100072. [DOI: 10.1016/j.snr.2021.100072] [Reference Citation Analysis]
3 Nandhakumar P, Lee W, Nam S, Bhatia A, Seo J, Kim G, Lee NS, Yoon YH, Joo JM, Yang H. Di(Thioether Sulfonate)-Substituted Quinolinedione as a Rapidly Dissoluble and Stable Electron Mediator and Its Application in Sensitive Biosensors. Adv Healthc Mater 2022;11:e2101819. [PMID: 34706164 DOI: 10.1002/adhm.202101819] [Reference Citation Analysis]
4 Weliwatte NS, Grattieri M, Minteer SD. Rational design of artificial redox-mediating systems toward upgrading photobioelectrocatalysis. Photochem Photobiol Sci 2021;20:1333-56. [PMID: 34550560 DOI: 10.1007/s43630-021-00099-7] [Reference Citation Analysis]
5 Simoska O, Gaffney EM, Lim K, Beaver K, Minteer SD. Understanding the Properties of Phenazine Mediators that Promote Extracellular Electron Transfer in Escherichia coli. J Electrochem Soc 2021;168:025503. [DOI: 10.1149/1945-7111/abe52d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
6 Gamero-Quijano A, Dossot M, Walcarius A, Scanlon MD, Herzog G. Electrogeneration of a Free-Standing Cytochrome c-Silica Matrix at a Soft Electrified Interface. Langmuir 2021;37:4033-41. [PMID: 33761740 DOI: 10.1021/acs.langmuir.1c00409] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Smutok O, Kavetskyy T, Katz E. Recent trends in enzyme engineering aiming to improve bioelectrocatalysis proceeding with direct electron transfer. Current Opinion in Electrochemistry 2022;31:100856. [DOI: 10.1016/j.coelec.2021.100856] [Reference Citation Analysis]
8 Hou K, Yang C, Shi J, Kuang B, Tian B. Nano- and Microscale Optical and Electrical Biointerfaces and Their Relevance to Energy Research. Small 2021;17:e2100165. [PMID: 34142435 DOI: 10.1002/smll.202100165] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Lovley DR. Electrotrophy: Other microbial species, iron, and electrodes as electron donors for microbial respirations. Bioresour Technol 2021;345:126553. [PMID: 34906705 DOI: 10.1016/j.biortech.2021.126553] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
10 Lee YS, Gerulskis R, Minteer SD. Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches. Curr Opin Biotechnol 2021;73:14-21. [PMID: 34246871 DOI: 10.1016/j.copbio.2021.06.013] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Xu N, Wang TL, Li WJ, Wang Y, Chen JJ, Liu J. Tuning Redox Potential of Anthraquinone-2-Sulfonate (AQS) by Chemical Modification to Facilitate Electron Transfer From Electrodes in Shewanella oneidensis. Front Bioeng Biotechnol 2021;9:705414. [PMID: 34447742 DOI: 10.3389/fbioe.2021.705414] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Macedo LJ, Santo AA, Sedenho GC, Hassan A, Iost RM, Feliciano GT, Crespilho FN. Three-dimensional catalysis and the efficient bioelectrocatalysis beyond surface chemistry. Journal of Catalysis 2021;401:200-5. [DOI: 10.1016/j.jcat.2021.07.022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Dey B, Dutta T. Laccases: thriving the domain of Bio-electrocatalysis. Bioelectrochemistry 2022. [DOI: 10.1016/j.bioelechem.2022.108144] [Reference Citation Analysis]
14 Yang J, Hu X, Fang X, Fan L, Qin G, Zhang Z, Xu J, Liang Y, Chen Q. Tough and redox-mediated alkaline gel polymer electrolyte membrane for flexible supercapacitor with high energy density and low temperature resistance. Journal of Membrane Science 2022;650:120386. [DOI: 10.1016/j.memsci.2022.120386] [Reference Citation Analysis]
15 Reginald SS, Lee H, Fazil N, Sharif B, Lee M, Kim MJ, Beyenal H, Chang IS. Control of carbon monoxide dehydrogenase orientation by site-specific immobilization enables direct electrical contact between enzyme cofactor and solid surface. Commun Biol 2022;5:390. [PMID: 35474238 DOI: 10.1038/s42003-022-03335-7] [Reference Citation Analysis]
16 Shao Y, Zha Z, Wang H. Heteroatom-doped porous carbon-supported single-atom catalysts for electrocatalytic energy conversion. Journal of Energy Chemistry 2021;63:54-73. [DOI: 10.1016/j.jechem.2021.04.041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Yang C, Zhang J, Zhang B, Liu D, Jia J, Li F, Song H. Engineering Shewanella carassii, a newly isolated exoelectrogen from activated sludge, to enhance methyl orange degradation and bioelectricity harvest. Synthetic and Systems Biotechnology 2022. [DOI: 10.1016/j.synbio.2022.04.010] [Reference Citation Analysis]
18 Beaver K, Gaffney EM, Minteer SD. Understanding metabolic bioelectrocatalysis of the purple bacterium Rhodobacter capsulatus through substrate modulation. Electrochimica Acta 2022;416:140291. [DOI: 10.1016/j.electacta.2022.140291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Lim K, Lee YS, Simoska O, Dong F, Sima M, Stewart RJ, Minteer SD. Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD+ Regeneration in Mediated NAD+-Dependent Bioelectrocatalysis. ACS Appl Mater Interfaces 2021;13:10942-51. [PMID: 33646753 DOI: 10.1021/acsami.0c22302] [Reference Citation Analysis]
20 Cembellín S, Batanero B. Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. Chem Rec 2021;21:2453-71. [PMID: 33955158 DOI: 10.1002/tcr.202100128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
21 Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev 2021. [PMID: 34727501 DOI: 10.1021/acs.chemrev.1c00412] [Reference Citation Analysis]
22 de Moura Torquato LD, Grattieri M. Photobioelectrochemistry of intact photosynthetic bacteria: advances and future outlook. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.101018] [Reference Citation Analysis]
23 Simoska O, Rhodes Z, Weliwatte S, Cabrera-Pardo JR, Gaffney EM, Lim K, Minteer SD. Advances in Electrochemical Modification Strategies of 5-Hydroxymethylfurfural. ChemSusChem 2021;14:1674-86. [PMID: 33577707 DOI: 10.1002/cssc.202100139] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Moriyama J, Yoshimoto M. Efficient Entrapment of Carbonic Anhydrase in Alginate Hydrogels Using Liposomes for Continuous-Flow Catalytic Reactions. ACS Omega 2021;6:6368-78. [PMID: 33718727 DOI: 10.1021/acsomega.0c06299] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
25 Litti YV, Russkova YI, Zhuravleva EA, Parshina SN, Kovalev AA, Kovalev DA, Nozhevnikova AN. Electromethanogenesis: a Promising Biotechnology for the Anaerobic Treatment of Organic Waste. Appl Biochem Microbiol 2022;58:19-36. [DOI: 10.1134/s0003683822010057] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS Cent Sci 2021;7:415-31. [PMID: 33791425 DOI: 10.1021/acscentsci.0c01532] [Cited by in Crossref: 73] [Cited by in F6Publishing: 46] [Article Influence: 73.0] [Reference Citation Analysis]
27 Pedersen A, Barrio J, Li A, Jervis R, Brett DJL, Titirici MM, Stephens IEL. Dual‐Metal Atom Electrocatalysts: Theory, Synthesis, Characterization, and Applications. Advanced Energy Materials 2022;12:2102715. [DOI: 10.1002/aenm.202102715] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
28 Feng J, Chen C, Sun X, Peng H. Implantable Fiber Biosensors Based on Carbon Nanotubes. Acc Mater Res 2021;2:138-46. [DOI: 10.1021/accountsmr.0c00109] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
29 Zhuang X, Zhang Y, Xiao A, Zhang A, Fang B. Applications of Synthetic Biotechnology on Carbon Neutrality Research: A Review on Electrically Driven Microbial and Enzyme Engineering. Front Bioeng Biotechnol 2022;10:826008. [DOI: 10.3389/fbioe.2022.826008] [Reference Citation Analysis]
30 Lu S, Rodrigues RM, Huang S, Estabrook DA, Chapman JO, Guan X, Sletten EM, Liu C. Perfluorocarbon Nanoemulsions Create a Beneficial O2 Microenvironment in N2-fixing Biological | Inorganic Hybrid. Chem Catal 2021;1:704-20. [PMID: 34693393 DOI: 10.1016/j.checat.2021.06.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Sundaresan V, Do H, Shrout JD, Bohn PW. Electrochemical and spectroelectrochemical characterization of bacteria and bacterial systems. Analyst 2021;147:22-34. [PMID: 34874024 DOI: 10.1039/d1an01954f] [Reference Citation Analysis]
32 Weliwatte NS, Minteer SD. Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule 2021;5:2564-92. [DOI: 10.1016/j.joule.2021.08.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021;50:7941-8002. [PMID: 34060564 DOI: 10.1039/d1cs00223f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
34 Qian Y, Jiang Z, Long Y, Fei H, Song H, Guo C. Electroenzymatic Aromatic Nitration via an Electric Field and Electro-Mediator. ACS Sustainable Chem Eng 2022;10:6667-74. [DOI: 10.1021/acssuschemeng.2c00523] [Reference Citation Analysis]
35 Jia J, Huo Q, Yang D, Sun Y, Zhang S, Li S, Shi J, Jiang Z. Granum -Inspired Photoenzyme-Coupled Catalytic System via Stacked Polymeric Carbon Nitride. ACS Catal 2021;11:9210-20. [DOI: 10.1021/acscatal.1c01555] [Reference Citation Analysis]
36 Li Z, Song Y, Fan C, Xu T, Zhang X. Mini‐pillar Based Multi‐channel Electrochemical Platform for Studying the Multifactor Silver Electrodeposition. Electroanalysis 2021;33:2401-5. [DOI: 10.1002/elan.202100462] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Gaffney EM, Simoska O, Minteer SD. The Use of Electroactive Halophilic Bacteria for Improvements and Advancements in Environmental High Saline Biosensing. Biosensors (Basel) 2021;11:48. [PMID: 33673343 DOI: 10.3390/bios11020048] [Reference Citation Analysis]
38 Ramanavicius S, Ramanavicius A. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells. Nanomaterials (Basel) 2021;11:371. [PMID: 33540587 DOI: 10.3390/nano11020371] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
39 Thadathil DA, Varghese A, Ahamed CVS, Krishnakumar K, Varma SS, Lankalapalli RS, Radhakrishnan KV. Enzyme based bioelectrocatalysis over laccase immobilized poly-thiophene supported carbon fiber paper for the oxidation of D-ribofuranose to D-ribonolactone. Molecular Catalysis 2022;524:112314. [DOI: 10.1016/j.mcat.2022.112314] [Reference Citation Analysis]
40 Jayathilake BS, Chandrasekaran S, Freyman MC, Deutzmann JS, Kracke F, Spormann AM, Huang Z, Tao L, Pang SH, Baker SE. Developing reactors for electrifying bio-methanation: a perspective from bio-electrochemistry. Sustainable Energy Fuels. [DOI: 10.1039/d1se02041b] [Reference Citation Analysis]
41 Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2021. [PMID: 34751568 DOI: 10.1021/acs.chemrev.1c00384] [Reference Citation Analysis]
42 Chu N, Hao W, Wu Q, Liang Q, Jiang Y, Liang P, Jason Ren Z, Jianxiong Zeng R. Microbial Electrosynthesis for Producing Medium Chain Fatty Acids. Engineering 2021. [DOI: 10.1016/j.eng.2021.03.025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Dong F, Simoska O, Gaffney E, Minteer SD. Applying synthetic biology strategies to bioelectrochemical systems. Electrochemical Science Advances. [DOI: 10.1002/elsa.202100197] [Reference Citation Analysis]
44 Tan X, Nielsen J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev 2022. [PMID: 35584360 DOI: 10.1039/d2cs00309k] [Reference Citation Analysis]
45 Gu T, Wang D, Lekbach Y, Xu D. Extracellular electron transfer in microbial biocorrosion. Current Opinion in Electrochemistry 2021;29:100763. [DOI: 10.1016/j.coelec.2021.100763] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
46 Rhodes Z, Simoska O, Dantanarayana A, Stevenson KJ, Minteer SD. Using structure-function relationships to understand the mechanism of phenazine-mediated extracellular electron transfer in Escherichia coli. iScience 2021;24:103033. [PMID: 34522869 DOI: 10.1016/j.isci.2021.103033] [Reference Citation Analysis]
47 Ru X, Chen H, Zhang Z, Cao Y, Yang L, Bai Z. Metal-organic framework-erythrocytic hybrid surfaces with enhanced oxygen reduction performance for enzymatic biofuel cells–An updated strategy. Journal of Power Sources 2022;535:231411. [DOI: 10.1016/j.jpowsour.2022.231411] [Reference Citation Analysis]
48 Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2021. [PMID: 34797053 DOI: 10.1021/acs.chemrev.1c00614] [Reference Citation Analysis]
49 Wied P, Carraro F, Bolivar JM, Doonan CJ, Falcaro P, Nidetzky B. Combining a Genetically Engineered Oxidase with Hydrogen-Bonded Organic Frameworks (HOFs) for Highly Efficient Biocomposites. Angew Chem Int Ed Engl 2022;61:e202117345. [PMID: 35038217 DOI: 10.1002/anie.202117345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Lian W, Xiao R, Li J, Yao H, Liu H. Construction of biocomputing systems based on switchable bioelectrocatalysis and stimulus-responsive film electrodes. Sensors and Actuators Reports 2021;3:100054. [DOI: 10.1016/j.snr.2021.100054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Kaplaneris N, Vilches-herrera M, Wu J, Ackermann L. Sustainable Ruthenium(II)-Catalyzed C–H Activations in and on H 2 O. ACS Sustainable Chem Eng 2022;10:6871-88. [DOI: 10.1021/acssuschemeng.2c00873] [Reference Citation Analysis]
52 Han Z, Wu F, Yu P, Mao L. Computer-Aided Rational Construction of Mediated Bioelectrocatalysis with π-Conjugated (Hetero)cyclic Molecules: Toward Promoted Distant Electron Tunneling and Improved Biosensing. Anal Chem 2022. [PMID: 35604848 DOI: 10.1021/acs.analchem.2c01289] [Reference Citation Analysis]
53 Fourmond V, Plumeré N, Léger C. Reversible catalysis. Nat Rev Chem 2021;5:348-60. [DOI: 10.1038/s41570-021-00268-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
54 Jack J, Fu H, Leininger A, Hyster TK, Ren ZJ. Cell-Free CO 2 Valorization to C6 Pharmaceutical Precursors via a Novel Electro-Enzymatic Process. ACS Sustainable Chem Eng 2022;10:4114-21. [DOI: 10.1021/acssuschemeng.1c06746] [Reference Citation Analysis]
55 Cai J, Huang H, Li Z, Gao Y, Liang Q, Chen X, Chu N, Hao W, Wang D, Jiang Y, Zeng RJ. A rechargeable microbial electrochemical sensor for water biotoxicity monitoring. Biosensors and Bioelectronics: X 2022;10:100132. [DOI: 10.1016/j.biosx.2022.100132] [Reference Citation Analysis]
56 Lee YJ, Lee S, Kim D. Translational Detection of Indole by Complementary Cell-free Protein Synthesis Assay. Front Bioeng Biotechnol 2022;10:900162. [DOI: 10.3389/fbioe.2022.900162] [Reference Citation Analysis]
57 Walker NL, Dick JE. Versatile potentiometric metabolite sensing without dioxygen interference. Biosensors and Bioelectronics 2022;201:113888. [DOI: 10.1016/j.bios.2021.113888] [Reference Citation Analysis]
58 Hooe SL, Moreno JJ, Reid AG, Cook EN, Machan CW. Mediated Inner-Sphere Electron Transfer Induces Homogeneous Reduction of CO2 via Through-Space Electronic Conjugation. Angew Chem Int Ed Engl 2022;61:e202109645. [PMID: 34695281 DOI: 10.1002/anie.202109645] [Reference Citation Analysis]
59 An X, Meng Z, Wang Y, Sun J. Design of a Single-Channel Chaotic Secure Communication System Implemented by DNA Strand Displacement. ACS Synth Biol 2022;11:843-54. [PMID: 35089690 DOI: 10.1021/acssynbio.1c00509] [Reference Citation Analysis]
60 Chu N, Wang D, Wang H, Liang Q, Chang J, Gao Y, Jiang Y, Zeng RJ. Flow-Electrode Microbial Electrosynthesis for Increasing Production Rates and Lowering Energy Consumption. Engineering 2021. [DOI: 10.1016/j.eng.2021.09.015] [Reference Citation Analysis]
61 Lovley DR, Holmes DE. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol 2021. [PMID: 34316046 DOI: 10.1038/s41579-021-00597-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
62 Edwardes Moore E, Cobb SJ, Coito AM, Oliveira AR, Pereira IAC, Reisner E. Understanding the local chemical environment of bioelectrocatalysis. Proc Natl Acad Sci USA 2022;119:e2114097119. [DOI: 10.1073/pnas.2114097119] [Reference Citation Analysis]
63 Paiva TO, Schneider A, Bataille L, Chovin A, Anne A, Michon T, Wege C, Demaille C. Enzymatic activity of individual bioelectrocatalytic viral nanoparticles: dependence of catalysis on the viral scaffold and its length. Nanoscale 2022;14:875-89. [PMID: 34985473 DOI: 10.1039/d1nr07445h] [Reference Citation Analysis]
64 Antón-garcía D, Edwardes Moore E, Bajada MA, Eisenschmidt A, Oliveira AR, Pereira IAC, Warnan J, Reisner E. Photoelectrochemical hybrid cell for unbiased CO2 reduction coupled to alcohol oxidation. Nat Synth 2022;1:77-86. [DOI: 10.1038/s44160-021-00003-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
65 Lin M, Gupta S, Chang C, Lee C, Tai N. Carbon nanotubes/polyethylenimine/glucose oxidase as a non-invasive electrochemical biosensor performs high sensitivity for detecting glucose in saliva. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107547] [Reference Citation Analysis]
66 Zhang H, Catania R, Jeuken LJC. Membrane Protein Modified Electrodes in Bioelectrocatalysis. Catalysts 2020;10:1427. [DOI: 10.3390/catal10121427] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Pankratova G, Bollella P, Pankratov D, Gorton L. Supercapacitive biofuel cells. Curr Opin Biotechnol 2021;73:179-87. [PMID: 34481244 DOI: 10.1016/j.copbio.2021.08.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]