BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Deline AR, Frank BP, Smith CL, Sigmon LR, Wallace AN, Gallagher MJ, Goodwin DG, Durkin DP, Fairbrother DH. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chem Rev 2020;120:11651-97. [DOI: 10.1021/acs.chemrev.0c00351] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhao Y, Xu J, Jiang X. DNA cleavage and chemical transformation of nano-plastics mediated by surface ligand and size. Chem Commun (Camb) 2021;57:9740-3. [PMID: 34474462 DOI: 10.1039/d1cc04028f] [Reference Citation Analysis]
2 Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021;121:9243-358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Reference Citation Analysis]
3 Laguta AN, Mchedlov-petrossyan NO, Bogatyrenko SI, Kovalenko SM, Bunyatyan ND, Trostianko PV, Karbivskii VL, Filatov DY. Interaction of aqueous suspensions of single-walled oxidized carbon nanotubes with inorganic and organic electrolytes. Journal of Molecular Liquids 2022;347:117948. [DOI: 10.1016/j.molliq.2021.117948] [Reference Citation Analysis]
4 Olsson E, Cottom J, Au H, Titirici M, Cai Q. Investigating the effect of edge and basal plane surface functionalisation of carbonaceous anodes for alkali metal (Li/Na/K) ion batteries. Carbon 2021;177:226-43. [DOI: 10.1016/j.carbon.2021.02.065] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
5 Gao W, Tan Y, Wu B, Chen Y, Hu Z, Wang Y, Wen Y, Zhou Z, Zhou N. Nano-Fe1−xS embedded BCAA/Fe3O4 as the stabilized catalyst for simultaneous quinclorac oxidation and Cr(VI) reduction. Separation and Purification Technology 2022;297:121422. [DOI: 10.1016/j.seppur.2022.121422] [Reference Citation Analysis]
6 Côa F, de Souza Delite F, Strauss M, Martinez DST. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NanoImpact 2022. [DOI: 10.1016/j.impact.2022.100413] [Reference Citation Analysis]
7 Kansara K, Bolan S, Radhakrishnan D, Palanisami T, Al-Muhtaseb AH, Bolan N, Vinu A, Kumar A, Karakoti A. A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Environ Pollut 2021;296:118726. [PMID: 34953948 DOI: 10.1016/j.envpol.2021.118726] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
8 Song J, Cui N, Sun S, Lu X, Wang Y, Shi H, Lee E, Jiang H. Controllability of Graphene Oxide Doxorubicin Loading Capacity Based on Density Functional Theory. Nanomaterials 2022;12:479. [DOI: 10.3390/nano12030479] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Cai R, Xiao L, Liu M, Du F, Wang Z. Recent Advances in Functional Carbon Quantum Dots for Antitumour. Int J Nanomedicine 2021;16:7195-229. [PMID: 34720582 DOI: 10.2147/IJN.S334012] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Nguyen ATN, Shim JH. All carbon hybrid N-doped carbon dots/carbon nanotube structures as an efficient catalyst for the oxygen reduction reaction. RSC Adv 2021;11:12520-30. [PMID: 35423825 DOI: 10.1039/d1ra01197a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
11 Wapshott-Stehli HL, Grunden AM. In situ H2O2 generation methods in the context of enzyme biocatalysis. Enzyme Microb Technol 2021;145:109744. [PMID: 33750536 DOI: 10.1016/j.enzmictec.2021.109744] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Gao Y, Zeng X, Zhang W, Zhou L, Xue W, Tang M, Sun S. The aggregation behaviour and mechanism of commercial graphene oxide in surface aquatic environments. Sci Total Environ 2022;806:150942. [PMID: 34655633 DOI: 10.1016/j.scitotenv.2021.150942] [Reference Citation Analysis]
13 Yang Y, Piao Y, Wang R, Su Y, Qiu J, Liu N. Mechanism of biochar functional groups in the catalytic reduction of tetrachloroethylene by sulfides. Environ Pollut 2022;300:118921. [PMID: 35104561 DOI: 10.1016/j.envpol.2022.118921] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Fu H, Wang B, Zhu D, Zhou Z, Bao S, Qu X, Guo Y, Ling L, Zheng S, Duan P, Mao J, Schmidt-Rohr K, Tao S, Alvarez PJJ. Mechanism for selective binding of aromatic compounds on oxygen-rich graphene nanosheets based on molecule size/polarity matching. Sci Adv 2022;8:eabn4650. [PMID: 35905181 DOI: 10.1126/sciadv.abn4650] [Reference Citation Analysis]
15 Siwal SS, Saini AK, Rarotra S, Zhang Q, Thakur VK. Recent advancements in transparent carbon nanotube films: chemistry and imminent challenges. J Nanostruct Chem 2021;11:93-130. [DOI: 10.1007/s40097-020-00378-2] [Cited by in Crossref: 8] [Article Influence: 8.0] [Reference Citation Analysis]
16 Nadolska M, Prześniak-Welenc M, Łapiński M, Sadowska K. Synthesis of Phosphonated Carbon Nanotubes: New Insight into Carbon Nanotubes Functionalization. Materials (Basel) 2021;14:2726. [PMID: 34064192 DOI: 10.3390/ma14112726] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhao PF, Liu ZQ. Attaching a Dipeptide to Fullerene as an Antioxidant Hybrid against DNA Oxidation. Chem Res Toxicol 2021;34:2366-74. [PMID: 34672520 DOI: 10.1021/acs.chemrestox.1c00283] [Reference Citation Analysis]
18 Wang, Zhang J, Cao R, Zhang Y, Li J. The detection and characterization techniques for the interaction between graphene oxide and natural colloids: A review. Sci Total Environ 2021;:151906. [PMID: 34838546 DOI: 10.1016/j.scitotenv.2021.151906] [Reference Citation Analysis]
19 Mchedlov-Petrossyan NO, Marfunin MO. Formation, Stability, and Coagulation of Fullerene Organosols: C70 in Acetonitrile-Toluene Solutions and Related Systems. Langmuir 2021;37:7156-66. [PMID: 34048255 DOI: 10.1021/acs.langmuir.1c00722] [Reference Citation Analysis]
20 Lv XW, Ji S, Wang ZH, Wang XY, Wang H, Wang RF. Fabrication of highly-conductive porous capacitor electrodes by the insertion of Cu-nanoparticles into N-doped flocculated carbon catalysts. J Colloid Interface Sci 2021;610:106-15. [PMID: 34922068 DOI: 10.1016/j.jcis.2021.12.042] [Reference Citation Analysis]
21 Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. Materials (Basel) 2022;15:1037. [PMID: 35160982 DOI: 10.3390/ma15031037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Isaeva VI, Vedenyapina MD, Kurmysheva AY, Weichgrebe D, Nair RR, Nguyen NPT, Kustov LM. Modern Carbon-Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules 2021;26:6628. [PMID: 34771037 DOI: 10.3390/molecules26216628] [Reference Citation Analysis]
23 Zhang W, Jing P, Du J, Wu S, Yan W, Liu G. Interfacial-interaction-induced fabrication of biomass-derived porous carbon with enhanced intrinsic active sites. Chinese Journal of Catalysis 2022;43:2231-9. [DOI: 10.1016/s1872-2067(21)64031-7] [Reference Citation Analysis]
24 Yu B, Zhang Z, Liu W, Liu F, Huang J, Na H, Zhu J. Hydroxyl-Enriched Core/Shell Carbon Nanotubes for Catalytic Hydrolysis of Regenerated Cellulose to Glucose. ACS Appl Nano Mater 2022;5:5364-72. [DOI: 10.1021/acsanm.2c00354] [Reference Citation Analysis]