BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qin F, Fang Z, Zhou J, Sun C, Chen K, Ding Z, Li G, Qiu X. Efficient Removal of Cu 2+ in Water by Carboxymethylated Cellulose Nanofibrils: Performance and Mechanism. Biomacromolecules 2019;20:4466-75. [DOI: 10.1021/acs.biomac.9b01198] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Zhang N, Gao Y, Sheng K, Jing W, Xu X, Bao T, Wang S. Effective extraction of fluoroquinolones from water using facile modified plant fibers. Journal of Pharmaceutical Analysis 2022. [DOI: 10.1016/j.jpha.2022.06.004] [Reference Citation Analysis]
2 Si R, Chen Y, Wang D, Yu D, Ding Q, Li R, Wu C. Nanoarchitectonics for High Adsorption Capacity Carboxymethyl Cellulose Nanofibrils-Based Adsorbents for Efficient Cu2+ Removal. Nanomaterials (Basel) 2022;12:160. [PMID: 35010110 DOI: 10.3390/nano12010160] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Tang C, Brodie P, Brunsting M, Tam KC. Carboxylated cellulose cryogel beads via a one-step ester crosslinking of maleic anhydride for copper ions removal. Carbohydr Polym 2020;242:116397. [PMID: 32564823 DOI: 10.1016/j.carbpol.2020.116397] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
4 Hussain N, Mehdi M, Siyal SH, Wassan RK, Hashemikia S, Sarwar MN, Yamaguchi T, Kim IS. Conductive and antibacterial cellulose nanofibers decorated with copper nanoparticles for potential application in wearable devices. J of Applied Polymer Sci 2021;138:51381. [DOI: 10.1002/app.51381] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Phuong HT, Thoa NK, Tuyet PTA, Van QN, Hai YD. Cellulose Nanomaterials as a Future, Sustainable and Renewable Material. Crystals 2022;12:106. [DOI: 10.3390/cryst12010106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Fang Z, Zhang H, Qiu S, Kuang Y, Zhou J, Lan Y, Sun C, Li G, Gong S, Ma Z. Versatile Wood Cellulose for Biodegradable Electronics. Adv Mater Technol 2021;6:2000928. [DOI: 10.1002/admt.202000928] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
7 Chen C, Hu L. Nanoscale Ion Regulation in Wood-Based Structures and Their Device Applications. Adv Mater 2021;33:e2002890. [PMID: 33108027 DOI: 10.1002/adma.202002890] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 28.0] [Reference Citation Analysis]
8 Zhou X, Jin C, Liu G, Wu G, Huo S, Kong Z. Functionalized lignin-based magnetic adsorbents with tunable structure for the efficient and selective removal of Pb(II) from aqueous solution. Chemical Engineering Journal 2021;420:130409. [DOI: 10.1016/j.cej.2021.130409] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 12.0] [Reference Citation Analysis]
9 Si R, Wu C, Yu D, Ding Q, Li R. Novel TEMPO-oxidized cellulose nanofiber/polyvinyl alcohol/polyethyleneimine nanoparticles for Cu2+ removal in water. Cellulose 2021;28:10999-1011. [DOI: 10.1007/s10570-021-04236-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Norfarhana A, Ilyas R, Ngadi N. A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydrate Polymers 2022;291:119563. [DOI: 10.1016/j.carbpol.2022.119563] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
11 Kaur J, Sengupta P, Mukhopadhyay S. Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb, and Cu). Ind Eng Chem Res . [DOI: 10.1021/acs.iecr.1c04583] [Reference Citation Analysis]
12 Sabaghi S, Alipoormazandarani N, Gao W, Fatehi P. Dual lignin-derived polymeric systems for hazardous ion removals. J Hazard Mater 2021;417:125970. [PMID: 33975163 DOI: 10.1016/j.jhazmat.2021.125970] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kim Y, Park J, Bang J, Kim J, Jin HJ, Kwak HW. Highly efficient Cr(VI) remediation by cationic functionalized nanocellulose beads. J Hazard Mater 2021;426:128078. [PMID: 34952494 DOI: 10.1016/j.jhazmat.2021.128078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Luo J, Yu D, Hristovski KD, Fu K, Shen Y, Westerhoff P, Crittenden JC. Critical Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Mechanism Identification and Engineering Design. Environ Sci Technol 2021;55:4287-304. [PMID: 33709709 DOI: 10.1021/acs.est.0c07936] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
15 Kwak H, Shin S, Kim J, Kim J, Lee D, Lee H, Lee EJ, Hyun J. Protective coating of strawberries with cellulose nanofibers. Carbohydr Polym 2021;258:117688. [PMID: 33593561 DOI: 10.1016/j.carbpol.2021.117688] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zhong Y, An Y, Wang K, Zhang W, Hu Z, Chen Z, Wang S, Wang B, Wang X, Li X, Zhang X, Wang X. Evaluation of Aerogel Spheres Derived from Salix psammophila in Removal of Heavy Metal Ions in Aqueous Solution. Forests 2022;13:61. [DOI: 10.3390/f13010061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Jin J, Xue J, Liu Y, Yang G, Wang YY. Recent progresses in luminescent metal-organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Trans 2021;50:1950-72. [PMID: 33527951 DOI: 10.1039/d0dt03930f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
18 Abdelhamid HN, Mathew AP. Cellulose-Based Materials for Water Remediation: Adsorption, Catalysis, and Antifouling. Front Chem Eng 2021;3:790314. [DOI: 10.3389/fceng.2021.790314] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Zhang D, Li G, Liu Y, Hou G, Cui J, Xie H, Zhang S, Sun Z, Fang Z. Favorable combination of foldability and toughness of transparent cellulose nanofibril films by a PET fiber-reinforced strategy. Int J Biol Macromol 2020;164:3268-74. [PMID: 32866525 DOI: 10.1016/j.ijbiomac.2020.08.196] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Zhou J, Fang Z, Cui J, Zhang X, Qian Y, Liu W, Yang D, Qiu X. Wood-inspired strategy to toughen transparent cellulose nanofibril films. Carbohydr Polym 2021;259:117759. [PMID: 33674013 DOI: 10.1016/j.carbpol.2021.117759] [Reference Citation Analysis]
21 Zhang L, Guo L, Wei G. Recent Advances in the Fabrication and Environmental Science Applications of Cellulose Nanofibril-Based Functional Materials. Materials (Basel) 2021;14:5390. [PMID: 34576613 DOI: 10.3390/ma14185390] [Reference Citation Analysis]
22 Yetgin AG, Dündar OA, Çakmakçı E, Arar Ö. Removal of boron from aqueous solution by modified cellulose. Biomass Conv Bioref . [DOI: 10.1007/s13399-021-02133-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Yang W, Li J, Lyu Y, Yan X, Yang P, Zuo M. Bioinspired 3D hierarchical BSA-NiCo2O4@MnO2/C multifunctional micromotors for simultaneous spectrophotometric determination of enzyme activity and pollutant removal. Journal of Cleaner Production 2021;309:127294. [DOI: 10.1016/j.jclepro.2021.127294] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Chen J, Liu Y, Liu Z, Chen Y, Zhang C, Yin Y, Yang Q, Shi Z, Xiong C. Carbon nanofibril composites with high sulfur loading fabricated from nanocellulose for high-performance lithium-sulfur batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;603:125249. [DOI: 10.1016/j.colsurfa.2020.125249] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 7.5] [Reference Citation Analysis]
25 Wang X, Fan X, Xie H, Li X, Hao C. Polyacrylic acid/carboxymethyl cellulose/activated carbon composite hydrogel for removal of heavy metal ion and cationic dye. Cellulose 2022;29:483-501. [DOI: 10.1007/s10570-021-04286-8] [Reference Citation Analysis]