BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lorson T, Jaksch S, Lübtow MM, Jüngst T, Groll J, Lühmann T, Luxenhofer R. A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink. Biomacromolecules 2017;18:2161-71. [DOI: 10.1021/acs.biomac.7b00481] [Cited by in Crossref: 59] [Cited by in F6Publishing: 47] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills D. Bioinks and bioprinting: A focused review. Bioprinting 2020;18:e00080. [DOI: 10.1016/j.bprint.2020.e00080] [Cited by in Crossref: 35] [Cited by in F6Publishing: 15] [Article Influence: 17.5] [Reference Citation Analysis]
2 Ramakrishna SN, Morgese G, Zenobi-wong M, Benetti EM. Comblike Polymers with Topologically Different Side Chains for Surface Modification: Assembly Process and Interfacial Physicochemical Properties. Macromolecules 2019;52:1632-41. [DOI: 10.1021/acs.macromol.8b02549] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
3 Hahn L, Keßler L, Polzin L, Fritze L, Forster S, Helten H, Luxenhofer R. ABA Type Amphiphiles with Poly(2‐benzhydryl‐2‐oxazine) Moieties: Synthesis, Characterization and Inverse Thermogelation. Macromol Chem Phys 2021;222:2100114. [DOI: 10.1002/macp.202100114] [Reference Citation Analysis]
4 Lübtow MM, Hahn L, Haider MS, Luxenhofer R. Drug Specificity, Synergy and Antagonism in Ultrahigh Capacity Poly(2-oxazoline)/Poly(2-oxazine) based Formulations. J Am Chem Soc 2017;139:10980-3. [PMID: 28750162 DOI: 10.1021/jacs.7b05376] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 11.6] [Reference Citation Analysis]
5 Cooke ME, Rosenzweig DH. The rheology of direct and suspended extrusion bioprinting. APL Bioeng 2021;5:011502. [PMID: 33564740 DOI: 10.1063/5.0031475] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Beudert M, Hahn L, Horn AHC, Hauptstein N, Sticht H, Meinel L, Luxenhofer R, Gutmann M, Lühmann T. Merging bioresponsive release of insulin-like growth factor I with 3D printable thermogelling hydrogels. J Control Release 2022:S0168-3659(22)00224-3. [PMID: 35489547 DOI: 10.1016/j.jconrel.2022.04.028] [Reference Citation Analysis]
7 Borova S, Tokarev V, Stahlhut P, Luxenhofer R. Crosslinking of hydrophilic polymers using polyperoxides. Colloid Polym Sci 2020;298:1699-713. [DOI: 10.1007/s00396-020-04738-w] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Lorson T, Ruopp M, Nadernezhad A, Eiber J, Vogel U, Jungst T, Lühmann T. Sterilization Methods and Their Influence on Physicochemical Properties and Bioprinting of Alginate as a Bioink Component. ACS Omega 2020;5:6481-6. [PMID: 32258883 DOI: 10.1021/acsomega.9b04096] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
9 Xu J, Zhang M, Du W, Zhao J, Ling G, Zhang P. Chitosan-based high-strength supramolecular hydrogels for 3D bioprinting. Int J Biol Macromol 2022:S0141-8130(22)01647-6. [PMID: 35907459 DOI: 10.1016/j.ijbiomac.2022.07.206] [Reference Citation Analysis]
10 Park KM, Shin YM, Kim K, Shin H. Tissue Engineering and Regenerative Medicine 2017: A Year in Review. Tissue Eng Part B Rev 2018;24:327-44. [PMID: 29652594 DOI: 10.1089/ten.TEB.2018.0027] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 7.8] [Reference Citation Analysis]
11 Klein T, Parkin J, Jongh PAJM, Esser L, Sepehrizadeh T, Zheng G, Veer M, Alt K, Hagemeyer CE, Haddleton DM, Davis TP, Thelakkat M, Kempe K. Functional Brush Poly(2‐ethyl‐2‐oxazine)s: Synthesis by CROP and RAFT, Thermoresponsiveness and Grafting onto Iron Oxide Nanoparticles. Macromol Rapid Commun 2019;40:1800911. [DOI: 10.1002/marc.201800911] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
12 Lübtow MM, Haider MS, Kirsch M, Klisch S, Luxenhofer R. Like Dissolves Like? A Comprehensive Evaluation of Partial Solubility Parameters to Predict Polymer-Drug Compatibility in Ultrahigh Drug-Loaded Polymer Micelles. Biomacromolecules 2019;20:3041-56. [PMID: 31318531 DOI: 10.1021/acs.biomac.9b00618] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 10.7] [Reference Citation Analysis]
13 Madau M, Morandi G, Lapinte V, Le Cerf D, Dulong V, Picton L. Thermo-responsive hydrogels from hyaluronic acid functionalized with poly(2-alkyl-2-oxazoline) copolymers with tuneable transition temperature. Polymer 2022. [DOI: 10.1016/j.polymer.2022.124643] [Reference Citation Analysis]
14 Cui X, Li J, Hartanto Y, Durham M, Tang J, Zhang H, Hooper G, Lim K, Woodfield T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv Healthc Mater 2020;9:e1901648. [PMID: 32352649 DOI: 10.1002/adhm.201901648] [Cited by in Crossref: 80] [Cited by in F6Publishing: 52] [Article Influence: 40.0] [Reference Citation Analysis]
15 Hasselmann S, Hahn L, Lorson T, Schätzlein E, Sébastien I, Beudert M, Lühmann T, Neubauer JC, Sextl G, Luxenhofer R, Heinrich D. Freeform direct laser writing of versatile topological 3D scaffolds enabled by intrinsic support hydrogel. Mater Horiz 2021. [PMID: 34617095 DOI: 10.1039/d1mh00925g] [Reference Citation Analysis]
16 Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore MS. Flow Behavior Prior to Crosslinking: The Need for Precursor Rheology for Placement of Hydrogels in Medical Applications and for 3D Bioprinting. Prog Polym Sci 2019;91:126-40. [PMID: 31571701 DOI: 10.1016/j.progpolymsci.2019.01.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 15.0] [Reference Citation Analysis]
17 Denzer BR, Kulchar RJ, Huang RB, Patterson J. Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels 2021;7:158. [PMID: 34698172 DOI: 10.3390/gels7040158] [Reference Citation Analysis]
18 Banerjee H, Suhail M, Ren H. Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges. Biomimetics (Basel) 2018;3:E15. [PMID: 31105237 DOI: 10.3390/biomimetics3030015] [Cited by in Crossref: 93] [Cited by in F6Publishing: 47] [Article Influence: 23.3] [Reference Citation Analysis]
19 Jerca FA, Anghelache AM, Ghibu E, Cecoltan S, Stancu I, Trusca R, Vasile E, Teodorescu M, Vuluga DM, Hoogenboom R, Jerca VV. Poly(2-isopropenyl-2-oxazoline) Hydrogels for Biomedical Applications. Chem Mater 2018;30:7938-49. [DOI: 10.1021/acs.chemmater.8b03545] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
20 Chimene D, Kaunas R, Gaharwar AK. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Adv Mater 2020;32:e1902026. [PMID: 31599073 DOI: 10.1002/adma.201902026] [Cited by in Crossref: 207] [Cited by in F6Publishing: 171] [Article Influence: 103.5] [Reference Citation Analysis]
21 Bakirci E, Frank A, Gumbel S, Otto PF, Fürsattel E, Tessmer I, Schmidt H, Dalton PD. Melt Electrowriting of Amphiphilic Physically Crosslinked Segmented Copolymers. Macro Chemistry & Physics 2021;222:2100259. [DOI: 10.1002/macp.202100259] [Reference Citation Analysis]
22 Wu S, Zhang Q, Deng Y, Li X, Luo Z, Zheng B, Dong S. Assembly Pattern of Supramolecular Hydrogel Induced by Lower Critical Solution Temperature Behavior of Low-Molecular-Weight Gelator. J Am Chem Soc 2020;142:448-55. [PMID: 31825602 DOI: 10.1021/jacs.9b11290] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
23 Placone JK, Engler AJ. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications. Adv Healthc Mater 2018;7:e1701161. [PMID: 29283220 DOI: 10.1002/adhm.201701161] [Cited by in Crossref: 152] [Cited by in F6Publishing: 124] [Article Influence: 38.0] [Reference Citation Analysis]
24 Xiong C, Zhang L, Xie M, Sun R. Photoregulating of Stretchability and Toughness of a Self-Healable Polymer Hydrogel. Macromol Rapid Commun 2018;39:e1800018. [PMID: 29675886 DOI: 10.1002/marc.201800018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
25 Varanaraja Z, Kim J, Becer CR. Poly(2-oxazine)s: A comprehensive overview of the polymer structures, physical properties and applications. European Polymer Journal 2021;147:110299. [DOI: 10.1016/j.eurpolymj.2021.110299] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
26 Fonseca AC, Melchels FPW, Ferreira MJS, Moxon SR, Potjewyd G, Dargaville TR, Kimber SJ, Domingos M. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chem Rev 2020;120:11128-74. [PMID: 32937071 DOI: 10.1021/acs.chemrev.0c00342] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
27 Hahn L, Beudert M, Gutmann M, Keßler L, Stahlhut P, Fischer L, Karakaya E, Lorson T, Thievessen I, Detsch R, Lühmann T, Luxenhofer R. From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking. Macromol Biosci 2021;:e2100122. [PMID: 34292657 DOI: 10.1002/mabi.202100122] [Reference Citation Analysis]
28 Constantinou AP, Lan T, Carroll DR, Georgiou TK. Tricomponent thermoresponsive polymers based on an amine-containing monomer with tuneable hydrophobicity: Effect of composition. European Polymer Journal 2020;130:109655. [DOI: 10.1016/j.eurpolymj.2020.109655] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
29 Lübtow MM, Lorson T, Finger T, Gröber‐becker F, Luxenhofer R. Combining Ultra‐High Drug‐Loaded Micelles and Injectable Hydrogel Drug Depots for Prolonged Drug Release. Macromol Chem Phys 2020;221:1900341. [DOI: 10.1002/macp.201900341] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
30 Pertici V, Trimaille T, Gigmes D. Inputs of Macromolecular Engineering in the Design of Injectable Hydrogels Based on Synthetic Thermoresponsive Polymers. Macromolecules 2020;53:682-92. [DOI: 10.1021/acs.macromol.9b00705] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
31 Sedlacek O, Lava K, Verbraeken B, Kasmi S, De Geest BG, Hoogenboom R. Unexpected Reactivity Switch in the Statistical Copolymerization of 2-Oxazolines and 2-Oxazines Enabling the One-Step Synthesis of Amphiphilic Gradient Copolymers. J Am Chem Soc 2019;141:9617-22. [DOI: 10.1021/jacs.9b02607] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
32 Deo KA, Singh KA, Peak CW, Alge DL, Gaharwar AK. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Tissue Eng Part A 2020;26:318-38. [PMID: 32079490 DOI: 10.1089/ten.TEA.2019.0298] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 30.0] [Reference Citation Analysis]
33 Verbraeken B, Hullaert J, van Guyse J, Van Hecke K, Winne J, Hoogenboom R. The Elusive Seven-Membered Cyclic Imino Ether Tetrahydrooxazepine. J Am Chem Soc 2018;140:17404-8. [DOI: 10.1021/jacs.8b10918] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
34 Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018;178:204-80. [DOI: 10.1016/j.biomaterials.2018.05.022] [Cited by in Crossref: 155] [Cited by in F6Publishing: 109] [Article Influence: 38.8] [Reference Citation Analysis]
35 Hu C, Haider MS, Hahn L, Yang M, Luxenhofer R. Development of a 3D printable and highly stretchable ternary organic-inorganic nanocomposite hydrogel. J Mater Chem B 2021;9:4535-45. [PMID: 34037651 DOI: 10.1039/d1tb00484k] [Reference Citation Analysis]
36 Valot L, Martinez J, Mehdi A, Subra G. Chemical insights into bioinks for 3D printing. Chem Soc Rev 2019;48:4049-86. [DOI: 10.1039/c7cs00718c] [Cited by in Crossref: 59] [Cited by in F6Publishing: 20] [Article Influence: 19.7] [Reference Citation Analysis]
37 Kirila T, Smirnova A, Filippov A, Razina A, Tenkovtsev A, Filippov A. Thermosensitive star-shaped poly-2-ethyl-2-oxazine. Synthesis, structure characterization, conformation, and self-organization in aqueous solutions. European Polymer Journal 2019;120:109215. [DOI: 10.1016/j.eurpolymj.2019.109215] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
38 Trachsel L, Broguiere N, Rosenboom J, Zenobi-wong M, Benetti EM. Enzymatically crosslinked poly(2-alkyl-2-oxazoline) networks for 3D cell culture. J Mater Chem B 2018;6:7568-72. [DOI: 10.1039/c8tb02382d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
39 Florczak S, Lorson T, Zheng T, Mrlik M, Hutmacher DW, Higgins MJ, Luxenhofer R, Dalton PD. Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polym Int 2019;68:735-45. [DOI: 10.1002/pi.5759] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
40 Navara AM, Kim YS, Xu Y, Crafton CL, Diba M, Guo JL, Mikos AG. A dual-gelling poly(N-isopropylacrylamide)-based ink and thermoreversible poloxamer support bath for high-resolution bioprinting. Bioactive Materials 2022;14:302-12. [DOI: 10.1016/j.bioactmat.2021.11.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Chandra PK, Soker S, Atala A. Tissue engineering: current status and future perspectives. Principles of Tissue Engineering. Elsevier; 2020. pp. 1-35. [DOI: 10.1016/b978-0-12-818422-6.00004-6] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Lübtow MM, Nelke LC, Seifert J, Kühnemundt J, Sahay G, Dandekar G, Nietzer SL, Luxenhofer R. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models. Journal of Controlled Release 2019;303:162-80. [DOI: 10.1016/j.jconrel.2019.04.014] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 12.3] [Reference Citation Analysis]
43 Hahn L, Karakaya E, Zorn T, Sochor B, Maier M, Stahlhut P, Forster S, Fischer K, Seiffert S, Pöppler AC, Detsch R, Luxenhofer R. An Inverse Thermogelling Bioink Based on an ABA-Type Poly(2-oxazoline) Amphiphile. Biomacromolecules 2021;22:3017-27. [PMID: 34100282 DOI: 10.1021/acs.biomac.1c00427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Hashemnejad SM, Badruddoza AZM, Zarket B, Ricardo Castaneda C, Doyle PS. Thermoresponsive nanoemulsion-based gel synthesized through a low-energy process. Nat Commun 2019;10:2749. [PMID: 31227703 DOI: 10.1038/s41467-019-10749-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 18] [Article Influence: 10.7] [Reference Citation Analysis]
45 Blöhbaum J, Paulus I, Pöppler AC, Tessmar J, Groll J. Influence of charged groups on the cross-linking efficiency and release of guest molecules from thiol-ene cross-linked poly(2-oxazoline) hydrogels. J Mater Chem B 2019;7:1782-94. [PMID: 32254920 DOI: 10.1039/c8tb02575d] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
46 Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021;10:e2001382. [PMID: 33448122 DOI: 10.1002/adhm.202001382] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 20.0] [Reference Citation Analysis]
47 Abou‐shamat MA, Calvo‐castro J, Stair JL, Cook MT. Modifying the Properties of Thermogelling Poloxamer 407 Solutions through Covalent Modification and the Use of Polymer Additives. Macromol Chem Phys 2019;220:1900173. [DOI: 10.1002/macp.201900173] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
48 Imam SS, Hussain A, Altamimi MA, Alshehri S. Four-Dimensional Printing for Hydrogel: Theoretical Concept, 4D Materials, Shape-Morphing Way, and Future Perspectives. Polymers (Basel) 2021;13:3858. [PMID: 34771414 DOI: 10.3390/polym13213858] [Reference Citation Analysis]
49 Haider MS, Ahmad T, Yang M, Hu C, Hahn L, Stahlhut P, Groll J, Luxenhofer R. Tuning the Thermogelation and Rheology of Poly(2-Oxazoline)/Poly(2-Oxazine)s Based Thermosensitive Hydrogels for 3D Bioprinting. Gels 2021;7:78. [PMID: 34202652 DOI: 10.3390/gels7030078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Bergamaschi G, Musicò A, Frigerio R, Strada A, Pizzi A, Talone B, Ghezzi J, Gautieri A, Chiari M, Metrangolo P, Vanna R, Baldelli Bombelli F, Cretich M, Gori A. Composite Peptide-Agarose Hydrogels for Robust and High-Sensitivity 3D Immunoassays. ACS Appl Mater Interfaces 2022;14:4811-22. [PMID: 35060693 DOI: 10.1021/acsami.1c18466] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Hu C, Hahn L, Yang M, Altmann A, Stahlhut P, Groll J, Luxenhofer R. Improving printability of a thermoresponsive hydrogel biomaterial ink by nanoclay addition. J Mater Sci 2021;56:691-705. [DOI: 10.1007/s10853-020-05190-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
52 Amirova AI, Kirile TY, Ten’kovtsev AV, Filippov AP. Effect of Terminal Hydrophobic Groups on the Behavior of Linear Poly-2-Isopropyl-2-Oxazoline in Aqueous Solution. Fibre Chem 2018;50:293-6. [DOI: 10.1007/s10692-019-09978-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
53 Trachsel L, Johnbosco C, Lang T, Benetti EM, Zenobi-wong M. Double-Network Hydrogels Including Enzymatically Crosslinked Poly-(2-alkyl-2-oxazoline)s for 3D Bioprinting of Cartilage-Engineering Constructs. Biomacromolecules 2019;20:4502-11. [DOI: 10.1021/acs.biomac.9b01266] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
54 Hahn L, Maier M, Stahlhut P, Beudert M, Flegler V, Forster S, Altmann A, Töppke F, Fischer K, Seiffert S, Böttcher B, Lühmann T, Luxenhofer R. Inverse Thermogelation of Aqueous Triblock Copolymer Solutions into Macroporous Shear-Thinning 3D Printable Inks. ACS Appl Mater Interfaces 2020;12:12445-56. [DOI: 10.1021/acsami.9b21282] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
55 Trachsel L, Zenobi-Wong M, Benetti EM. The role of poly(2-alkyl-2-oxazoline)s in hydrogels and biofabrication. Biomater Sci 2021;9:2874-86. [PMID: 33729230 DOI: 10.1039/d0bm02217a] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
56 Zahoranova A, Vojtova L, Dusicka E, Michlovska L, Krivankova N, Baudis S. Hybrid Hydrogel Networks by Photocrosslinking of Thermoresponsive α,ω‐Itaconyl‐PLGA‐PEG‐PLGA Micelles in Water: Influence of the Lithium Phenyl‐2,4,6‐Trimethylbenzoylphosphinate Photoinitinator. Macromol Chem Phys . [DOI: 10.1002/macp.202000165] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
57 Dargaville TR, Park J, Hoogenboom R. Poly(2‐oxazoline) Hydrogels: State‐of‐the‐Art and Emerging Applications. Macromol Biosci 2018;18:1800070. [DOI: 10.1002/mabi.201800070] [Cited by in Crossref: 44] [Cited by in F6Publishing: 30] [Article Influence: 11.0] [Reference Citation Analysis]
58 Chistyakov EM, Filatov SN, Sulyanova EA, Volkov VV. Determination of the Degree of Crystallinity of Poly(2-methyl-2-oxazoline). Polymers (Basel) 2021;13:4356. [PMID: 34960906 DOI: 10.3390/polym13244356] [Reference Citation Analysis]
59 Salgarella AR, Zahoranová A, Šrámková P, Majerčíková M, Pavlova E, Luxenhofer R, Kronek J, Lacík I, Ricotti L. Investigation of drug release modulation from poly(2-oxazoline) micelles through ultrasound. Sci Rep 2018;8:9893. [PMID: 29967422 DOI: 10.1038/s41598-018-28140-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
60 Haider MS, Lübtow MM, Endres S, Forster S, Flegler VJ, Böttcher B, Aseyev V, Pöppler A, Luxenhofer R. Think Beyond the Core: Impact of the Hydrophilic Corona on Drug Solubilization Using Polymer Micelles. ACS Appl Mater Interfaces 2020;12:24531-43. [DOI: 10.1021/acsami.9b22495] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
61 Lee J, Park JM, Jang W. Fructose-sensitive thermal transition behaviour of boronic ester-bearing telechelic poly(2-isopropyl-2-oxazoline). Chem Commun 2019;55:3343-6. [DOI: 10.1039/c8cc09835b] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
62 Lübtow MM, Mrlik M, Hahn L, Altmann A, Beudert M, Lühmann T, Luxenhofer R. Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline)-Based Thermogelling Hydrogel. J Funct Biomater 2019;10:E36. [PMID: 31394886 DOI: 10.3390/jfb10030036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
63 Veloso SRS, Andrade RGD, Castanheira EMS. Review on the advancements of magnetic gels: towards multifunctional magnetic liposome-hydrogel composites for biomedical applications. Adv Colloid Interface Sci 2021;288:102351. [PMID: 33387893 DOI: 10.1016/j.cis.2020.102351] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
64 Dalton PD, Woodfield TBF, Mironov V, Groll J. Advances in Hybrid Fabrication toward Hierarchical Tissue Constructs. Adv Sci (Weinh) 2020;7:1902953. [PMID: 32537395 DOI: 10.1002/advs.201902953] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 24.0] [Reference Citation Analysis]
65 Yang M, Haider MS, Forster S, Hu C, Luxenhofer R. Synthesis and Investigation of Chiral Poly(2,4-disubstituted-2-oxazoline)-Based Triblock Copolymers, Their Self-Assembly, and Formulation with Chiral and Achiral Drugs. Macromolecules. [DOI: 10.1021/acs.macromol.2c00229] [Reference Citation Analysis]