BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chakraborty I, Chatterjee K. Polymers and Composites Derived from Castor Oil as Sustainable Materials and Degradable Biomaterials: Current Status and Emerging Trends. Biomacromolecules 2020;21:4639-62. [PMID: 33222440 DOI: 10.1021/acs.biomac.0c01291] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Shan P, Lu H, Chen N, Liu H, Zhang X, Liu X. A novel bioderived AB 2 ‐type monomer from castor oil derivative for the preparation of fully biobased hyperbranched polyesters. J of Applied Polymer Sci. [DOI: 10.1002/app.52765] [Reference Citation Analysis]
2 Bonocore G, De Luca P. Preparation and Characterization of Insulating Panels from Recycled Polylaminate (Tetra Pak) Materials. Sustainability 2022;14:6858. [DOI: 10.3390/su14116858] [Reference Citation Analysis]
3 Nisah K, Rahmi, Ramli M, Iqhrammullah M, Mitaphonna R, Hartadi BS, Abdulmadjid S, Md Sani ND, Idroes R, Safitri E. Controlling the diffusion of micro-volume Pb solution on hydrophobic polyurethane membrane for quantitative analysis using laser-induced breakdown spectroscopy (LIBS). Arabian Journal of Chemistry 2022;15:103812. [DOI: 10.1016/j.arabjc.2022.103812] [Reference Citation Analysis]
4 Zuliani A, Bandelli D, Chelazzi D, Giorgi R, Baglioni P. Environmentally friendly ZnO/Castor oil polyurethane composites for the gas-phase adsorption of acetic acid. Journal of Colloid and Interface Science 2022;614:451-9. [DOI: 10.1016/j.jcis.2022.01.123] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Carvalho JPRGD, Simonassi NT, Lopes FPD, Monteiro SN, Vieira CMF. Novel Sustainable Castor Oil-Based Polyurethane Biocomposites Reinforced with Piassava Fiber Powder Waste for High-Performance Coating Floor. Sustainability 2022;14:5082. [DOI: 10.3390/su14095082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Lucherelli MA, Duval A, Avérous L. Biobased vitrimers: Towards sustainable and adaptable performing polymer materials. Progress in Polymer Science 2022;127:101515. [DOI: 10.1016/j.progpolymsci.2022.101515] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
7 Safder M, Arshad M, Temelli F, Ullah A. Bio-composites from spent hen derived lipids grafted on CNC and reinforced with nanoclay. Carbohydrate Polymers 2022;281:119082. [DOI: 10.1016/j.carbpol.2021.119082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Wang X, Xie D, Zhao X, Li Y, Zeng J. Sustainable, Malleable, and Recyclable Castor Oil-Derived Poly(urethane urea) Networks with Tunable Mechanical Properties and Shape Memory Performance Based on Dynamic Piperazine–Urea Bonds. Macromolecules. [DOI: 10.1021/acs.macromol.2c00104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
9 Blasioli GJ, Silva LHP, Holgado LA, de Sousa TPT, Guimarães SAC, Baffa O, Kinoshita A. Application of Electron Spin Resonance Spectroscopy in Bone Regeneration Studies. Braz J Phys 2022;52. [DOI: 10.1007/s13538-022-01060-4] [Reference Citation Analysis]
10 Liu R, Li S, Yao N, Xia J, Li M, Ding H, Xu L, Yang X. Castor oil-based polyurethane networks containing diselenide bonds: Self-healing, shape memory, and high flexibility. Progress in Organic Coatings 2022;163:106615. [DOI: 10.1016/j.porgcoat.2021.106615] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Kandil H, Samy M, Nashar DEE. Gallate ester of castor oil as a multifunctional additive in HAF carbon black–filled natural rubber composites. J Vinyl Addit Technol. [DOI: 10.1002/vnl.21886] [Reference Citation Analysis]
12 Khairnar Y, Hansora D, Hazra C, Kundu D, Tayde S, Tonde S, Naik J, Chatterjee A. Cellulose bionanocomposites for sustainable planet and people: A global snapshot of preparation, properties, and applications. Carbohydrate Polymer Technologies and Applications 2021;2:100065. [DOI: 10.1016/j.carpta.2021.100065] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Aydoğmuş E, Arslanoğlu H, Dağ M. Production of waste polyethylene terephthalate reinforced biocomposite with RSM design and evaluation of thermophysical properties by ANN. Journal of Building Engineering 2021;44:103337. [DOI: 10.1016/j.jobe.2021.103337] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
14 Li P, Chu Z, Chen Y, Yuan T, Yang Z. One-pot and solvent-free synthesis of castor oil-based polyurethane acrylate oligomers for UV-curable coatings applications. Progress in Organic Coatings 2021;159:106398. [DOI: 10.1016/j.porgcoat.2021.106398] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Valentino HAS, de Tarso Laia Dos Reis E Silva Pupio P, Gandini A, Lacerda TM. Furfuryl alcohol/tung oil matrix-based composites reinforced with bacterial cellulose fibres. Cellulose (Lond) 2021;:1-13. [PMID: 34177137 DOI: 10.1007/s10570-021-03999-0] [Reference Citation Analysis]
16 Ma Y, Wang R, Li Q, Li M, Liu C, Jia P. Castor oil as a platform for preparing bio-based chemicals and polymer materials. Green Materials. [DOI: 10.1680/jgrma.20.00085] [Reference Citation Analysis]
17 Tremblay-parrado K, García-astrain C, Avérous L. Click chemistry for the synthesis of biobased polymers and networks derived from vegetable oils. Green Chem 2021;23:4296-327. [DOI: 10.1039/d1gc00445j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]