BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, Barthélémy P. Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications. Bioconjug Chem 2019;30:366-83. [PMID: 30608140 DOI: 10.1021/acs.bioconjchem.8b00761] [Cited by in Crossref: 71] [Cited by in F6Publishing: 65] [Article Influence: 23.7] [Reference Citation Analysis]
Number Citing Articles
1 Zheng Q, Reid G, Eccles MR, Stayner C. Non-coding RNAs as potential biomarkers and therapeutic targets in polycystic kidney disease. Front Physiol 2022;13:1006427. [DOI: 10.3389/fphys.2022.1006427] [Reference Citation Analysis]
2 Zhu C, Lee JY, Woo JZ, Xu L, Nguyenla X, Yamashiro LH, Ji F, Biering SB, Van Dis E, Gonzalez F, Fox D, Wehri E, Rustagi A, Pinsky BA, Schaletzky J, Blish CA, Chiu C, Harris E, Sadreyev RI, Stanley S, Kauppinen S, Rouskin S, Näär AM. An intranasal ASO therapeutic targeting SARS-CoV-2. Nat Commun 2022;13:4503. [PMID: 35922434 DOI: 10.1038/s41467-022-32216-0] [Reference Citation Analysis]
3 Kadlecová Z, Kalíková K, Tesařová E, Gilar M. Phosphorothioate oligonucleotides separation in ion-pairing reversed-phase liquid chromatography: effect of ion-pairing system. Journal of Chromatography A 2022. [DOI: 10.1016/j.chroma.2022.463201] [Reference Citation Analysis]
4 Kassahun GS, Farias ED, Benizri S, Mortier C, Gaubert A, Salinas G, Garrigue P, Kuhn A, Zigah D, Barthélémy P. Electropolymerizable Thiophene-Oligonucleotides for Electrode Functionalization. ACS Appl Mater Interfaces 2022. [PMID: 35649248 DOI: 10.1021/acsami.2c02993] [Reference Citation Analysis]
5 Padmakumari RG, Sherly CD, Ramesan RM. Therapeutic delivery of nucleic acids for skin wound healing. Ther Deliv 2022;13:339-58. [PMID: 35975470 DOI: 10.4155/tde-2022-0003] [Reference Citation Analysis]
6 Debiais M, Vasseur JJ, Smietana M. Applications of the Reversible Boronic Acids/Boronate Switch to Nucleic Acids. Chem Rec 2022;:e202200085. [PMID: 35641415 DOI: 10.1002/tcr.202200085] [Reference Citation Analysis]
7 Rothenbühler S, Gonzalez A, Iacovache I, Langenegger SM, Zuber B, Häner R. Tetraphenylethylene-DNA conjugates: influence of sticky ends and DNA sequence length on the supramolecular assembly of AIE-active vesicles. Org Biomol Chem 2022;20:3703-7. [PMID: 35262542 DOI: 10.1039/d2ob00357k] [Reference Citation Analysis]
8 Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Complex DNA Architectonics─Self-Assembly of Amphiphilic Oligonucleotides into Ribbons, Vesicles, and Asterosomes. Bioconjug Chem 2022. [PMID: 35357155 DOI: 10.1021/acs.bioconjchem.2c00077] [Reference Citation Analysis]
9 Honcharenko D, Rocha CSJ, Lundin KE, Maity J, Milton S, Tedebark U, Murtola M, Honcharenko M, Slaitas A, Smith CIE, Zain R, Strömberg R. 2'-O-(N-(Aminoethyl)carbamoyl)methyl Modification Allows for Lower Phosphorothioate Content in Splice-Switching Oligonucleotides with Retained Activity. Nucleic Acid Ther 2022. [PMID: 35238623 DOI: 10.1089/nat.2021.0086] [Reference Citation Analysis]
10 Enmark M, Häggström J, Samuelsson J, Fornstedt T. Building machine-learning-based model for retention time and resolution predictions in ion pair chromatography of oligonucleotides. Journal of Chromatography A 2022. [DOI: 10.1016/j.chroma.2022.462999] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Jin C, Ei‐sagheer AH, Li S, Vallis KA, Tan W, Brown T. Engineering Enzyme‐Cleavable Oligonucleotides by Automated Solid‐Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers. Angewandte Chemie. [DOI: 10.1002/ange.202114016] [Reference Citation Analysis]
12 Hirunagi T, Sahashi K, Meilleur KG, Katsuno M. Nucleic Acid-Based Therapeutic Approach for Spinal and Bulbar Muscular Atrophy and Related Neurological Disorders. Genes (Basel) 2022;13:109. [PMID: 35052449 DOI: 10.3390/genes13010109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Hardy J, Niman S, Goldfaden RF, Ashchi M, Bisharat M, Huston J, Hartmann H, Choksi R. A Review of the Clinical Pharmacology of Pelacarsen: A Lipoprotein(a)-Lowering Agent. Am J Cardiovasc Drugs 2022;22:47-54. [PMID: 34490591 DOI: 10.1007/s40256-021-00499-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wang X, Xiao X, Feng Y, Li J, Zhang Y. A photoresponsive antibody–siRNA conjugate for activatable immunogene therapy of cancer. Chem Sci . [DOI: 10.1039/d2sc01672a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Akhilesh, Uniyal A, Gadepalli A, Tiwari V, Allani M, Chouhan D, Ummadisetty O, Verma N, Tiwari V. Unlocking the potential of TRPV1 based siRNA therapeutics for the treatment of chemotherapy-induced neuropathic pain. Life Sci 2022;288:120187. [PMID: 34856209 DOI: 10.1016/j.lfs.2021.120187] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Jensen KB, Mikkelsen JH, Jensen SP, Kidal S, Friberg G, Skrydstrup T, Gustafsson MBF. New Phenol Esters for Efficient pH-Controlled Amine Acylation of Peptides, Proteins, and Sepharose Beads in Aqueous Media. Bioconjug Chem 2021. [PMID: 34962390 DOI: 10.1021/acs.bioconjchem.1c00528] [Reference Citation Analysis]
17 Golyshev VM, Pyshnyi DV, Lomzov AA. Calculation of Energy for RNA/RNA and DNA/RNA Duplex Formation by Molecular Dynamics Simulation. Mol Biol 2021;55:927-40. [DOI: 10.1134/s002689332105006x] [Reference Citation Analysis]
18 Dastjerd NT, Valibeik A, Rahimi Monfared S, Goodarzi G, Moradi Sarabi M, Hajabdollahi F, Maniati M, Amri J, Samavarchi Tehrani S. Gene therapy: A promising approach for breast cancer treatment. Cell Biochem Funct 2021. [PMID: 34904722 DOI: 10.1002/cbf.3676] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Barakat F, Gaudin K, Vialet B, Gissot A, Darbary A, Barthélémy P, Ferey L. An analytical study of lipid-oligonucleotide aggregation properties. J Pharm Biomed Anal 2021;205:114327. [PMID: 34479172 DOI: 10.1016/j.jpba.2021.114327] [Reference Citation Analysis]
20 Shadid M, Badawi M, Abulrob A. Antisense oligonucleotides: absorption, distribution, metabolism, and excretion. Expert Opin Drug Metab Toxicol 2021;17:1281-92. [PMID: 34643122 DOI: 10.1080/17425255.2021.1992382] [Reference Citation Analysis]
21 Chardet C, Payrastre C, Gerland B, Escudier JM. Convertible and Constrained Nucleotides: The 2'-Deoxyribose 5'-C-Functionalization Approach, a French Touch. Molecules 2021;26:5925. [PMID: 34641475 DOI: 10.3390/molecules26195925] [Reference Citation Analysis]
22 Khosravi HM, Jantsch MF. Site-directed RNA editing: recent advances and open challenges. RNA Biol 2021;:1-10. [PMID: 34569891 DOI: 10.1080/15476286.2021.1983288] [Reference Citation Analysis]
23 Song Y, Song W, Lan X, Cai W, Jiang D. Spherical nucleic acids: Organized nucleotide aggregates as versatile nanomedicine. Aggregate. [DOI: 10.1002/agt2.120] [Reference Citation Analysis]
24 Rydzik AM, Balk R, Koegler M, Steinle T, Riether D, Gottschling D. Access to 1'-Amino Carbocyclic Phosphoramidite to Enable Postsynthetic Functionalization of Oligonucleotides. Org Lett 2021;23:6735-9. [PMID: 34424724 DOI: 10.1021/acs.orglett.1c02302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Shoari A, Tooyserkani R, Tahmasebi M, Löwik DWPM. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021;13:1391. [PMID: 34575464 DOI: 10.3390/pharmaceutics13091391] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
26 Terada C, Wada F, Uchida M, Yasutomi Y, Oh K, Kawamoto S, Kayaba Y, Yamayoshi A, Harada-Shiba M, Obika S, Yamamoto T. Programmed Instability of Ligand Conjugation Manifold for Efficient Hepatocyte Delivery of Therapeutic Oligonucleotides. Nucleic Acid Ther 2021. [PMID: 34468210 DOI: 10.1089/nat.2021.0036] [Reference Citation Analysis]
27 Cotton AD, Wells JA, Seiple IB. Biotin as a Reactive Handle to Selectively Label Proteins and DNA with Small Molecules. ACS Chem Biol 2021. [PMID: 34410115 DOI: 10.1021/acschembio.1c00252] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Parthymos I, Kostapanos MS, Mikhailidis DP, Florentin M. Lipoprotein (a) as a treatment target for cardiovascular disease prevention and related therapeutic strategies: a critical overview. Eur J Prev Cardiol 2021:zwab052. [PMID: 34389859 DOI: 10.1093/eurjpc/zwab052] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
29 Gambles MT, Li J, Wang J, Sborov D, Yang J, Kopeček J. Crosslinking of CD38 Receptors Triggers Apoptosis of Malignant B Cells. Molecules 2021;26:4658. [PMID: 34361811 DOI: 10.3390/molecules26154658] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
30 Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021;:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
31 Olate‐moya F, Palza H. Effect of graphene oxide on the pH‐responsive drug release from supramolecular hydrogels. J Appl Polym Sci 2022;139:51420. [DOI: 10.1002/app.51420] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Zhang Y, Sun C, Wang C, Jankovic KE, Dong Y. Lipids and Lipid Derivatives for RNA Delivery. Chem Rev 2021. [PMID: 34279087 DOI: 10.1021/acs.chemrev.1c00244] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Dovydenko I, Meschaninova M, Heckel AM, Tarassov I, Venyaminova A, Entelis N. Lipophilic Conjugates for Carrier-Free Delivery of RNA Importable into Human Mitochondria. Methods Mol Biol 2021;2277:49-67. [PMID: 34080144 DOI: 10.1007/978-1-0716-1270-5_4] [Reference Citation Analysis]
34 Lulla V, Wandel MP, Bandyra KJ, Ulferts R, Wu M, Dendooven T, Yang X, Doyle N, Oerum S, Beale R, O'Rourke SM, Randow F, Maier HJ, Scott W, Ding Y, Firth AE, Bloznelyte K, Luisi BF. Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome. J Virol 2021;95:e0066321. [PMID: 33963053 DOI: 10.1128/JVI.00663-21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
35 Österlund T, Aho A, Äärelä A, Tähtinen V, Korhonen H, Virta P. Immobilized Carbohydrates for Preparation of 3'-Glycoconjugated Oligonucleotides. Curr Protoc Nucleic Acid Chem 2020;83:e122. [PMID: 33290641 DOI: 10.1002/cpnc.122] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, van der Meel R. The current landscape of nucleic acid therapeutics. Nat Nanotechnol 2021;16:630-43. [PMID: 34059811 DOI: 10.1038/s41565-021-00898-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 112] [Article Influence: 4.0] [Reference Citation Analysis]
37 Aviñó A, Clua A, Bleda MJ, Eritja R, Fàbrega C. Evaluation of Floxuridine Oligonucleotide Conjugates Carrying Potential Enhancers of Cellular Uptake. Int J Mol Sci 2021;22:5678. [PMID: 34073599 DOI: 10.3390/ijms22115678] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Enmark M, Harun S, Samuelsson J, Örnskov E, Thunberg L, Dahlén A, Fornstedt T. Selectivity limits of and opportunities for ion pair chromatographic separation of oligonucleotides. J Chromatogr A 2021;1651:462269. [PMID: 34102400 DOI: 10.1016/j.chroma.2021.462269] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
39 Benizri S, Gaubert A, Soulard C, Gontier É, Svahn I, Rocchi P, Vacher G, Barthélémy P. Hydrogel based lipid-oligonucleotides: a new route to self-delivery of therapeutic sequences. Biomater Sci 2021;9:3638-44. [PMID: 33949449 DOI: 10.1039/d1bm00273b] [Reference Citation Analysis]
40 Lomzov AA, Kupryushkin MS, Dyudeeva ES, Pyshnyi DV. A Comparative Study of the Hybridization of Phosphoryl Guanidine Oligonucleotides with DNA and RNA. Russ J Bioorg Chem 2021;47:461-8. [DOI: 10.1134/s1068162021020151] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Meschaninova MI, Entelis NS, Chernolovskaya EL, Venyaminova AG. A Versatile Solid-Phase Approach to the Synthesis of Oligonucleotide Conjugates with Biodegradable Hydrazone Linker. Molecules 2021;26:2119. [PMID: 33917095 DOI: 10.3390/molecules26082119] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Alkhouri N, Reddy GK, Lawitz E. Oligonucleotide-Based Therapeutics: An Emerging Strategy for the Treatment of Chronic Liver Diseases. Hepatology 2021;73:1581-93. [PMID: 32978989 DOI: 10.1002/hep.31569] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng 2021. [PMID: 33795852 DOI: 10.1038/s41551-021-00698-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 95] [Article Influence: 9.0] [Reference Citation Analysis]
44 Zhong X, D'Antona AM. Recent Advances in the Molecular Design and Applications of Multispecific Biotherapeutics. Antibodies (Basel) 2021;10:13. [PMID: 33808165 DOI: 10.3390/antib10020013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
45 Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. Russ J Bioorg Chem 2021;47:71-98. [DOI: 10.1134/s1068162021010222] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Mendonça MCP, Kont A, Aburto MR, Cryan JF, O'Driscoll CM. Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System. Mol Pharm 2021;18:1491-506. [PMID: 33734715 DOI: 10.1021/acs.molpharmaceut.0c01238] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
47 Wang J, Shang J, Xiang Y, Tong A. General Method for Post-Synthetic Modification of Oligonucleotides Based on Oxidative Amination of 4-Thio-2'-deoxyuridine. Bioconjug Chem 2021;32:721-8. [PMID: 33730486 DOI: 10.1021/acs.bioconjchem.1c00016] [Reference Citation Analysis]
48 Cartón-García F, Saande CJ, Meraviglia-Crivelli D, Aldabe R, Pastor F. Oligonucleotide-Based Therapies for Renal Diseases. Biomedicines 2021;9:303. [PMID: 33809425 DOI: 10.3390/biomedicines9030303] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
49 Golyshev VM, Pyshnyi DV, Lomzov AA. Effects of Phosphoryl Guanidine Modification of Phosphate Residues on the Structure and Hybridization of Oligodeoxyribonucleotides. J Phys Chem B 2021;125:2841-55. [PMID: 33724825 DOI: 10.1021/acs.jpcb.0c10214] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Knerr L, Prakash TP, Lee R, Drury Iii WJ, Nikan M, Fu W, Pirie E, Maria LD, Valeur E, Hayen A, Ölwegård-halvarsson M, Broddefalk J, Ämmälä C, Østergaard ME, Meuller J, Sundström L, Andersson P, Janzén D, Jansson-löfmark R, Seth PP, Andersson S. Glucagon Like Peptide 1 Receptor Agonists for Targeted Delivery of Antisense Oligonucleotides to Pancreatic Beta Cell. J Am Chem Soc 2021;143:3416-29. [DOI: 10.1021/jacs.0c12043] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
51 Martín-Nieves V, Fàbrega C, Guasch M, Fernández S, Sanghvi YS, Ferrero M, Eritja R. Oligonucleotides Containing 1-Aminomethyl or 1-Mercaptomethyl-2-deoxy-d-ribofuranoses: Synthesis, Purification, Characterization, and Conjugation with Fluorophores and Lipids. Bioconjug Chem 2021;32:350-66. [PMID: 33543930 DOI: 10.1021/acs.bioconjchem.0c00717] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Honcharenko D, Druceikaite K, Honcharenko M, Bollmark M, Tedebark U, Strömberg R. New Alkyne and Amine Linkers for Versatile Multiple Conjugation of Oligonucleotides. ACS Omega 2021;6:579-93. [PMID: 33458510 DOI: 10.1021/acsomega.0c05075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Tsukimura R, Kajino R, Zhou Y, Chandela A, Ueno Y. 4′-C-Aminoethoxy modification enhanced nuclease resistance of RNAs and improved thermal stability of RNA duplexes. Results in Chemistry 2021;3:100231. [DOI: 10.1016/j.rechem.2021.100231] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
54 Wang Z, Lin J, Zhang Y, Yang C, Zhao Y, Leng Z, Wang H, Zhang D, Zhu J, Li Z. Synthesis and short DNA in situ loading and delivery of 4 nm-aperture flexible organic frameworks. Mater Chem Front 2021;5:869-75. [DOI: 10.1039/d0qm00791a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
55 Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020;25:E5963. [PMID: 33339365 DOI: 10.3390/molecules25245963] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
56 Danielsen MB, Christensen NJ, Jørgensen PT, Jensen KJ, Wengel J, Lou C. Polyamine-Functionalized 2'-Amino-LNA in Oligonucleotides: Facile Synthesis of New Monomers and High-Affinity Binding towards ssDNA and dsDNA. Chemistry 2021;27:1416-22. [PMID: 33073896 DOI: 10.1002/chem.202004495] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
57 Valanti EK, Dalakoura-Karagkouni K, Siasos G, Kardassis D, Eliopoulos AG, Sanoudou D. Advances in biological therapies for dyslipidemias and atherosclerosis. Metabolism 2021;116:154461. [PMID: 33290761 DOI: 10.1016/j.metabol.2020.154461] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
58 Walunj MB, Srivatsan SG. Nucleic Acid Conformation Influences Postsynthetic Suzuki-Miyaura Labeling of Oligonucleotides. Bioconjug Chem 2020;31:2513-21. [PMID: 33089687 DOI: 10.1021/acs.bioconjchem.0c00466] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Pavlova AS, Dovydenko IS, Kupryushkin MS, Grigor'eva AE, Pyshnaya IA, Pyshnyi DV. Amphiphilic "Like-a-Brush" Oligonucleotide Conjugates with Three Dodecyl Chains: Self-Assembly Features of Novel Scaffold Compounds for Nucleic Acids Delivery. Nanomaterials (Basel) 2020;10:E1948. [PMID: 33003636 DOI: 10.3390/nano10101948] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
60 Noske S, Karimov M, Aigner A, Ewe A. Tyrosine-Modification of Polypropylenimine (PPI) and Polyethylenimine (PEI) Strongly Improves Efficacy of siRNA-Mediated Gene Knockdown. Nanomaterials (Basel) 2020;10:E1809. [PMID: 32927826 DOI: 10.3390/nano10091809] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
61 Dammes N, Peer D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci 2020;41:755-75. [PMID: 32893005 DOI: 10.1016/j.tips.2020.08.004] [Cited by in Crossref: 38] [Cited by in F6Publishing: 69] [Article Influence: 19.0] [Reference Citation Analysis]
62 Crooke ST, Seth PP, Vickers TA, Liang XH. The Interaction of Phosphorothioate-Containing RNA Targeted Drugs with Proteins Is a Critical Determinant of the Therapeutic Effects of These Agents. J Am Chem Soc 2020;142:14754-71. [PMID: 32786803 DOI: 10.1021/jacs.0c04928] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
63 Crooke ST, Vickers TA, Liang XH. Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res 2020;48:5235-53. [PMID: 32356888 DOI: 10.1093/nar/gkaa299] [Cited by in Crossref: 44] [Cited by in F6Publishing: 68] [Article Influence: 22.0] [Reference Citation Analysis]
64 Le BT, Kosbar TR, Veedu RN. Novel Disulfide-Bridged Bioresponsive Antisense Oligonucleotide Induces Efficient Splice Modulation in Muscle Myotubes in Vitro. ACS Omega 2020;5:18035-9. [PMID: 32743177 DOI: 10.1021/acsomega.0c01463] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
65 Wang L, Okamura H, Sasaki S, Taniguchi Y. Enhancements in the utilization of antigene oligonucleotides in the nucleus by booster oligonucleotides. Chem Commun (Camb) 2020;56:9731-4. [PMID: 32815931 DOI: 10.1039/d0cc04240d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Dash D, Mestre TA. Therapeutic Update on Huntington's Disease: Symptomatic Treatments and Emerging Disease-Modifying Therapies. Neurotherapeutics 2020;17:1645-59. [PMID: 32705582 DOI: 10.1007/s13311-020-00891-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
67 Altrichter Y, Seitz O. Simultaneous Targeting of Two Master Regulators of Apoptosis with Dual-Action PNA- and DNA-Peptide Conjugates. Bioconjug Chem 2020;31:1928-37. [PMID: 32567853 DOI: 10.1021/acs.bioconjchem.0c00284] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
68 Guo Y, Zhang J, Pan G, Choi CHJ, Wang P, Li Y, Zhu X, Zhang C. Grafting multi-maleimides on antisense oligonucleotide to enhance its cellular uptake and gene silencing capability. Chem Commun (Camb) 2020;56:7439-42. [PMID: 32494799 DOI: 10.1039/d0cc02548h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Barakat F, Gaudin K, Vialet B, Bathany K, Benizri S, Barthélémy P, Ferey L. Analysis of lipid-oligonucleotide conjugates by cyclodextrin-modified capillary zone electrophoresis. Talanta 2020;219:121204. [PMID: 32887111 DOI: 10.1016/j.talanta.2020.121204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Weingärtner A, Bethge L, Weiss L, Sternberger M, Lindholm MW. Less Is More: Novel Hepatocyte-Targeted siRNA Conjugates for Treatment of Liver-Related Disorders. Mol Ther Nucleic Acids 2020;21:242-50. [PMID: 32590173 DOI: 10.1016/j.omtn.2020.05.026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
71 Stefanucci A, Dimmito MP, Molnar G, Streicher JM, Novellino E, Zengin G, Mollica A. Developing Cyclic Opioid Analogues: Fluorescently Labeled Bioconjugates of Biphalin. ACS Med Chem Lett 2020;11:720-6. [PMID: 32435376 DOI: 10.1021/acsmedchemlett.9b00569] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
72 Shen W, Wang R, Fan Q, Li Y, Cheng Y. Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Ther 2020;27:383-91. [PMID: 32366887 DOI: 10.1038/s41434-020-0151-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
73 Wilkinson AA, Jagu E, Ubych K, Coulthard S, Rushton AE, Kennefick J, Su Q, Neely RK, Fernandez-Trillo P. Site-Selective and Rewritable Labeling of DNA through Enzymatic, Reversible, and Click Chemistries. ACS Cent Sci 2020;6:525-34. [PMID: 32342002 DOI: 10.1021/acscentsci.9b01023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
74 Sun Y, Gao F, Yang C, Li Y, Jin C, Xie S, Lv C, Ding D, Han D, Li J, Wang R, Tan W. Construction of Bispecific Aptamer-Drug Conjugate by a Hybrid Chemical and Biological Approach. Bioconjug Chem 2020;31:1289-94. [PMID: 32223180 DOI: 10.1021/acs.bioconjchem.0c00071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Quemener AM, Bachelot L, Forestier A, Donnou-Fournet E, Gilot D, Galibert MD. The powerful world of antisense oligonucleotides: From bench to bedside. Wiley Interdiscip Rev RNA 2020;11:e1594. [PMID: 32233021 DOI: 10.1002/wrna.1594] [Cited by in Crossref: 38] [Cited by in F6Publishing: 65] [Article Influence: 19.0] [Reference Citation Analysis]
76 Clavé G, Dursun E, Vasseur J, Smietana M. An Entry of the Chemoselective Sulfo-Click Reaction into the Sphere of Nucleic Acids. Org Lett 2020;22:1914-8. [DOI: 10.1021/acs.orglett.0c00265] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
77 Jiang Z, Thayumanavan S. Non-cationic Material Design for Nucleic Acid Delivery. Adv Ther (Weinh) 2020;3:1900206. [PMID: 34164572 DOI: 10.1002/adtp.201900206] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 9.5] [Reference Citation Analysis]
78 Kauss T, Arpin C, Bientz L, Vinh Nguyen P, Vialet B, Benizri S, Barthélémy P. Lipid oligonucleotides as a new strategy for tackling the antibiotic resistance. Sci Rep 2020;10:1054. [PMID: 31974472 DOI: 10.1038/s41598-020-58047-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
79 Dyudeeva ES, Kupryushkin MS, Lomzov AA, Pyshnaya IA, Pyshnyi DV. Physicochemical Properties of the Phosphoryl Guanidine Oligodeoxyribonucleotide Analogs. Russ J Bioorg Chem 2019;45:709-18. [DOI: 10.1134/s1068162019060153] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
80 Leung D, Wurst JM, Liu T, Martinez RM, Datta-Mannan A, Feng Y. Antibody Conjugates-Recent Advances and Future Innovations. Antibodies (Basel) 2020;9:E2. [PMID: 31936270 DOI: 10.3390/antib9010002] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 23.5] [Reference Citation Analysis]
81 Enmark M, Bagge J, Samuelsson J, Thunberg L, Örnskov E, Leek H, Limé F, Fornstedt T. Analytical and preparative separation of phosphorothioated oligonucleotides: columns and ion-pair reagents. Anal Bioanal Chem 2020;412:299-309. [PMID: 31814048 DOI: 10.1007/s00216-019-02236-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
82 Zheng Y, Tai W. Insight into the siRNA transmembrane delivery—From cholesterol conjugating to tagging. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1606] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
83 Jin JO, Kim H, Huh YH, Herrmann A, Kwak M. Soft matter DNA nanoparticles hybridized with CpG motifs and peptide nucleic acids enable immunological treatment of cancer. J Control Release 2019;315:76-84. [PMID: 31639342 DOI: 10.1016/j.jconrel.2019.09.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
84 Shahsavari S, Eriyagama DNAM, Chen J, Halami B, Yin Y, Chillar K, Fang S. Sensitive Oligodeoxynucleotide Synthesis Using Dim and Dmoc as Protecting Groups. J Org Chem 2019;84:13374-83. [PMID: 31536351 DOI: 10.1021/acs.joc.9b01527] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
85 Nguyen MK, Huynh CT, Gilewski A, Wilner SE, Maier KE, Kwon N, Levy M, Alsberg E. Covalently tethering siRNA to hydrogels for localized, controlled release and gene silencing. Sci Adv 2019;5:eaax0801. [PMID: 31489374 DOI: 10.1126/sciadv.aax0801] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
86 Kabza AM, Young BE, Kundu N, Sczepanski JT. Heterochiral Nucleic Acid Circuits. Emerg Top Life Sci 2019;3:501-6. [PMID: 33501379 DOI: 10.1042/etls20190102] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
87 Macchi C, Sirtori CR, Corsini A, Santos RD, Watts GF, Ruscica M. A new dawn for managing dyslipidemias: The era of rna-based therapies. Pharmacol Res 2019;150:104413. [PMID: 31449975 DOI: 10.1016/j.phrs.2019.104413] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 10.7] [Reference Citation Analysis]
88 Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug Chem 2019;30:2483-501. [PMID: 31339691 DOI: 10.1021/acs.bioconjchem.9b00306] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 11.3] [Reference Citation Analysis]
89 Honcharenko M, Honcharenko D, Strömberg R. Efficient Conjugation to Phosphorothioate Oligonucleotides by Cu-Catalyzed Huisgen 1,3-Dipolar Cycloaddition. Bioconjug Chem 2019;30:1622-8. [PMID: 31067031 DOI: 10.1021/acs.bioconjchem.9b00217] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
90 Chernikov IV, Vlassov VV, Chernolovskaya EL. Current Development of siRNA Bioconjugates: From Research to the Clinic. Front Pharmacol 2019;10:444. [PMID: 31105570 DOI: 10.3389/fphar.2019.00444] [Cited by in Crossref: 60] [Cited by in F6Publishing: 79] [Article Influence: 20.0] [Reference Citation Analysis]