BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chomet M, van Dongen GAMS, Vugts DJ. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug Chem 2021;32:1315-30. [PMID: 33974403 DOI: 10.1021/acs.bioconjchem.1c00136] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Suman SK, Mukherjee A, Pandey U, Chakraborty A, Rakshit S, Tawate M, Sarma HD. 68Ga-Labeled Trastuzumab Fragments for ImmunoPET Imaging of Human Epidermal Growth Factor Receptor 2 Expression in Solid Cancers. Cancer Biotherapy and Radiopharmaceuticals 2022. [DOI: 10.1089/cbr.2022.0042] [Reference Citation Analysis]
2 Bhise A, Park H, Rajkumar S, Lee K, Cho SH, Lim JE, Kim JY, Lee KC, Yoon Y, Yoo J. Optimizing and determining the click chemistry mediated Cu-64 radiolabeling and physiochemical characteristics of trastuzumab conjugates. Biochemical and Biophysical Research Communications 2022. [DOI: 10.1016/j.bbrc.2022.11.026] [Reference Citation Analysis]
3 Damerow H, Cheng X, von Kiedrowski V, Schirrmacher R, Wängler B, Fricker G, Wängler C. Toward Optimized 89Zr-Immuno-PET: Side-by-Side Comparison of [89Zr]Zr-DFO-, [89Zr]Zr-3,4,3-(LI-1,2-HOPO)- and [89Zr]Zr-DFO*-Cetuximab for Tumor Imaging: Which Chelator Is the Most Suitable? Pharmaceutics 2022;14:2114. [PMID: 36297549 DOI: 10.3390/pharmaceutics14102114] [Reference Citation Analysis]
4 Qin X, Guo X, Liu T, Li L, Zhou N, Ma X, Meng X, Liu J, Zhu H, Jia B, Yang Z. High in-vivo stability in preclinical and first-in-human experiments with [18F]AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers. Eur J Nucl Med Mol Imaging 2022. [PMID: 36129493 DOI: 10.1007/s00259-022-05967-7] [Reference Citation Analysis]
5 Lindsley CW, Müller CE, Bongarzone S. Diagnostic and Therapeutic Radiopharmaceuticals. ACS Pharmacol Transl Sci . [DOI: 10.1021/acsptsci.2c00173] [Reference Citation Analysis]
6 Lindsley CW, Müller CE, Bongarzone S. Diagnostic and Therapeutic Radiopharmaceuticals. J Med Chem . [DOI: 10.1021/acs.jmedchem.2c01403] [Reference Citation Analysis]
7 Imura R, Kumakura Y, Yan L, Shimoura Y, Takahashi H, Ida H, Wada Y, Akimitsu N. DOTA chelation through click chemistry enables favorable biodistribution of 89Zr-radiolabeled antibodies: A comparison with DFO chelation.. [DOI: 10.1101/2022.09.08.507067] [Reference Citation Analysis]
8 Cheal SM, Chung SK, Vaughn BA, Cheung NV, Larson SM. Pretargeting: A Path Forward for Radioimmunotherapy. J Nucl Med 2022;63:1302-15. [DOI: 10.2967/jnumed.121.262186] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Lee KH, Jung KH, Lee JH. Immuno-PET Imaging and Radioimmunotherapy of Lymphomas. Mol Pharm 2022. [PMID: 36046954 DOI: 10.1021/acs.molpharmaceut.2c00563] [Reference Citation Analysis]
10 O'Hara MJ, Carter JC, Kellogg CM, Link JM. Anion exchange and extraction chromatography tandem column isolation of zirconium-89 (89Zr) from cyclotron bombarded targets using an automated fluidic platform. J Chromatogr A 2022;1678:463347. [PMID: 35908511 DOI: 10.1016/j.chroma.2022.463347] [Reference Citation Analysis]
11 Zippel C, Ermert J, Patt M, Gildehaus FJ, Ross TL, Reischl G, Kuwert T, Solbach C, Neumaier B, Kiss O, Mitterhauser M, Wadsak W, Schibli R, Kopka K. Cyclotrons Operated for Nuclear Medicine and Radiopharmacy in the German Speaking D-A-CH Countries: An Update on Current Status and Trends. Front Nucl Med 2022;2. [DOI: 10.3389/fnume.2022.850414] [Reference Citation Analysis]
12 An S, Zhang D, Zhang Y, Wang C, Shi L, Wei W, Huang G, Liu J. GPC3-targeted immunoPET imaging of hepatocellular carcinomas. Eur J Nucl Med Mol Imaging 2022. [PMID: 35147737 DOI: 10.1007/s00259-022-05723-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
13 Corbin BA, Lutter JC, White SA, Al-ani E, Biros ES, Karns JP, Allen MJ. Imaging. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 2022. [DOI: 10.1016/b978-0-12-823144-9.00157-6] [Reference Citation Analysis]
14 d'Orchymont F, Holland JP. A rotaxane-based platform for tailoring the pharmacokinetics of cancer-targeted radiotracers. Chem Sci 2022. [DOI: 10.1039/d2sc03928a] [Reference Citation Analysis]
15 Le Fur M, Fougère O, Lepareur N, Rousseaux O, Tripier R, Beyler M. Tuning the lipophilic nature of pyclen-based 90Y3+ radiopharmaceuticals for β-radiotherapy. Metallomics 2021;13:mfab070. [PMID: 34850060 DOI: 10.1093/mtomcs/mfab070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021;26:6997. [PMID: 34834087 DOI: 10.3390/molecules26226997] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Chakravarty R, Chakraborty S. Production of a broad palette of positron emitting radioisotopes using a low-energy cyclotron: Towards a new success story in cancer imaging? Appl Radiat Isot 2021;176:109860. [PMID: 34284216 DOI: 10.1016/j.apradiso.2021.109860] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]