BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jain G, Pendola M, Huang Y, Gebauer D, Evans JS. A Model Sea Urchin Spicule Matrix Protein, rSpSM50, Is a Hydrogelator That Modifies and Organizes the Mineralization Process. Biochemistry 2017;56:2663-75. [DOI: 10.1021/acs.biochem.7b00083] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Pancsa R, Schad E, Tantos A, Tompa P. Emergent functions of proteins in non-stoichiometric supramolecular assemblies. Biochim Biophys Acta Proteins Proteom 2019;1867:970-9. [PMID: 30826453 DOI: 10.1016/j.bbapap.2019.02.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
2 Jain G, Pendola M, Koutsoumpeli E, Johnson S, Evans JS. Glycosylation Fosters Interactions between Model Sea Urchin Spicule Matrix Proteins. Implications for Embryonic Spiculogenesis and Biomineralization. Biochemistry 2018;57:3032-5. [PMID: 29757633 DOI: 10.1021/acs.biochem.8b00207] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
3 Nawarathna THK, Nakashima K, Kawabe T, Mwandira W, Kurumisawa K, Kawasaki S. Artificial Fusion Protein to Facilitate Calcium Carbonate Mineralization on Insoluble Polysaccharide for Efficient Biocementation. ACS Sustainable Chem Eng 2021;9:11493-502. [DOI: 10.1021/acssuschemeng.1c03730] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Pendola M, Jain G, Huang YC, Gebauer D, Evans JS. Secrets of the Sea Urchin Spicule Revealed: Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation. ACS Omega 2018;3:11823-30. [PMID: 30320276 DOI: 10.1021/acsomega.8b01697] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
5 Xu Z, Long J, Zhang N, Cao H, Tang W, Shi K, Wang X, Moya S, Duan L, Pan H, Lai Y, Wang D, Wang G. Strong mineralization ability of strontium zinc silicate: Formation of a continuous biomorphic mineralized layer with enhanced osteogenic activity. Colloids and Surfaces B: Biointerfaces 2019;176:420-30. [DOI: 10.1016/j.colsurfb.2019.01.026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Rao A, Roncal-Herrero T, Schmid E, Drechsler M, Scheffner M, Gebauer D, Kröger R, Cölfen H. On Biomineralization: Enzymes Switch on Mesocrystal Assembly. ACS Cent Sci 2019;5:357-64. [PMID: 30834324 DOI: 10.1021/acscentsci.8b00853] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
7 Evans JS. Composite Materials Design: Biomineralization Proteins and the Guided Assembly and Organization of Biomineral Nanoparticles. Materials (Basel) 2019;12:E581. [PMID: 30781347 DOI: 10.3390/ma12040581] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
8 Walsh PJ, Fee K, Clarke SA, Julius ML, Buchanan FJ. Blueprints for the Next Generation of Bioinspired and Biomimetic Mineralised Composites for Bone Regeneration. Mar Drugs 2018;16:E288. [PMID: 30127281 DOI: 10.3390/md16080288] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
9 Wieczorek E, Chitruń A, Ożyhar A. Destabilised human transthyretin shapes the morphology of calcium carbonate crystals. Biochim Biophys Acta Gen Subj 2019;1863:313-24. [PMID: 30394286 DOI: 10.1016/j.bbagen.2018.10.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
10 Pendola M, Davidyants A, Jung YS, Evans JS. Sea Urchin Spicule Matrix Proteins Form Mesoscale "Smart" Hydrogels That Exhibit Selective Ion Interactions. ACS Omega 2017;2:6151-8. [PMID: 31457861 DOI: 10.1021/acsomega.7b00719] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
11 Juan-Colas J, Jung YS, Johnson S, Evans JS. A Complicated Relationship: Glycosylation, Ca(II), and Primary Sequence Affect the Interactions and Kinetics between Two Model Mollusk Shell Intracrystalline Nacre Proteins. Biochemistry 2020;59:346-50. [PMID: 31868354 DOI: 10.1021/acs.biochem.9b00867] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Pendola M, Evans JS. Noninvasive Microcomputerized X-ray Tomography Visualization of Mineralization Directed by Sea Urchin- and Nacre-Specific Proteins. Crystal Growth & Design 2018;18:1768-75. [DOI: 10.1021/acs.cgd.7b01668] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Pendola M, Jain G, Evans JS. Skeletal development in the sea urchin relies upon protein families that contain intrinsic disorder, aggregation-prone, and conserved globular interactive domains. PLoS One 2019;14:e0222068. [PMID: 31574084 DOI: 10.1371/journal.pone.0222068] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 Rodriguez-navarro C, Cizer Ö, Kudłacz K, Ibañez-velasco A, Ruiz-agudo C, Elert K, Burgos-cara A, Ruiz-agudo E. The multiple roles of carbonic anhydrase in calcium carbonate mineralization. CrystEngComm 2019;21:7407-23. [DOI: 10.1039/c9ce01544b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]