BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jain G, Pendola M, Rao A, Cölfen H, Evans JS. A Model Sea Urchin Spicule Matrix Protein Self-Associates To Form Mineral-Modifying Protein Hydrogels. Biochemistry 2016;55:4410-21. [PMID: 27426695 DOI: 10.1021/acs.biochem.6b00619] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Jain G, Pendola M, Huang Y, Gebauer D, Evans JS. A Model Sea Urchin Spicule Matrix Protein, rSpSM50, Is a Hydrogelator That Modifies and Organizes the Mineralization Process. Biochemistry 2017;56:2663-75. [DOI: 10.1021/acs.biochem.7b00083] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
2 Jain G, Pendola M, Koutsoumpeli E, Johnson S, Evans JS. Glycosylation Fosters Interactions between Model Sea Urchin Spicule Matrix Proteins. Implications for Embryonic Spiculogenesis and Biomineralization. Biochemistry 2018;57:3032-5. [PMID: 29757633 DOI: 10.1021/acs.biochem.8b00207] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
3 Pendola M, Jain G, Huang YC, Gebauer D, Evans JS. Secrets of the Sea Urchin Spicule Revealed: Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation. ACS Omega 2018;3:11823-30. [PMID: 30320276 DOI: 10.1021/acsomega.8b01697] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
4 Pancsa R, Schad E, Tantos A, Tompa P. Emergent functions of proteins in non-stoichiometric supramolecular assemblies. Biochim Biophys Acta Proteins Proteom 2019;1867:970-9. [PMID: 30826453 DOI: 10.1016/j.bbapap.2019.02.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
5 Perovic I, Davidyants A, Evans JS. Aragonite-Associated Mollusk Shell Protein Aggregates To Form Mesoscale "Smart" Hydrogels. ACS Omega 2016;1:886-93. [PMID: 30023493 DOI: 10.1021/acsomega.6b00236] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
6 Wang B, Mao L, Li M, Chen Y, Liu M, Xiao C, Jiang Y, Wang S, Yu S, Liu XY, Cölfen H. Synergistic Effect of Granular Seed Substrates and Soluble Additives in Structural Control of Prismatic CaCO 3 Thin Films. Langmuir 2018;34:11126-38. [DOI: 10.1021/acs.langmuir.8b02072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Pendola M, Evans JS. Noninvasive Microcomputerized X-ray Tomography Visualization of Mineralization Directed by Sea Urchin- and Nacre-Specific Proteins. Crystal Growth & Design 2018;18:1768-75. [DOI: 10.1021/acs.cgd.7b01668] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Juan-Colas J, Jung YS, Johnson S, Evans JS. A Complicated Relationship: Glycosylation, Ca(II), and Primary Sequence Affect the Interactions and Kinetics between Two Model Mollusk Shell Intracrystalline Nacre Proteins. Biochemistry 2020;59:346-50. [PMID: 31868354 DOI: 10.1021/acs.biochem.9b00867] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Pendola M, Davidyants A, Jung YS, Evans JS. Sea Urchin Spicule Matrix Proteins Form Mesoscale "Smart" Hydrogels That Exhibit Selective Ion Interactions. ACS Omega 2017;2:6151-8. [PMID: 31457861 DOI: 10.1021/acsomega.7b00719] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
10 Famiglietti AL, Wei Z, Beres TM, Milac AL, Tran DT, Patel D, Angerer RC, Angerer LM, Tabak LA. Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos. PLoS One 2017;12:e0176479. [PMID: 28448610 DOI: 10.1371/journal.pone.0176479] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
11 Evans J. Polymorphs, Proteins, and Nucleation Theory: A Critical Analysis. Minerals 2017;7:62. [DOI: 10.3390/min7040062] [Cited by in Crossref: 12] [Article Influence: 2.4] [Reference Citation Analysis]
12 Rao A, Roncal-Herrero T, Schmid E, Drechsler M, Scheffner M, Gebauer D, Kröger R, Cölfen H. On Biomineralization: Enzymes Switch on Mesocrystal Assembly. ACS Cent Sci 2019;5:357-64. [PMID: 30834324 DOI: 10.1021/acscentsci.8b00853] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
13 Evans JS. Composite Materials Design: Biomineralization Proteins and the Guided Assembly and Organization of Biomineral Nanoparticles. Materials (Basel) 2019;12:E581. [PMID: 30781347 DOI: 10.3390/ma12040581] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
14 Rao A, Arias J, Cölfen H. On Mineral Retrosynthesis of a Complex Biogenic Scaffold. Inorganics 2017;5:16. [DOI: 10.3390/inorganics5010016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
15 Rao A, Huang Y, Cölfen H. Additive Speciation and Phase Behavior Modulating Mineralization. J Phys Chem C 2017;121:21641-9. [DOI: 10.1021/acs.jpcc.7b02635] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
16 Rao A, Cölfen H. Mineralization and non-ideality: on nature's foundry. Biophys Rev 2016;8:309-29. [PMID: 28510024 DOI: 10.1007/s12551-016-0228-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
17 Katuwawala A, Oldfield CJ, Kurgan L. Accuracy of protein-level disorder predictions. Briefings in Bioinformatics 2020;21:1509-22. [DOI: 10.1093/bib/bbz100] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
18 Pendola M, Jain G, Evans JS. Skeletal development in the sea urchin relies upon protein families that contain intrinsic disorder, aggregation-prone, and conserved globular interactive domains. PLoS One 2019;14:e0222068. [PMID: 31574084 DOI: 10.1371/journal.pone.0222068] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
19 Wieczorek E, Chitruń A, Ożyhar A. Destabilised human transthyretin shapes the morphology of calcium carbonate crystals. Biochim Biophys Acta Gen Subj 2019;1863:313-24. [PMID: 30394286 DOI: 10.1016/j.bbagen.2018.10.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]