BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hamzah HH, Keattch O, Yeoman MS, Covill D, Patel BA. Three-Dimensional-Printed Electrochemical Sensor for Simultaneous Dual Monitoring of Serotonin Overflow and Circular Muscle Contraction. Anal Chem 2019;91:12014-20. [DOI: 10.1021/acs.analchem.9b02958] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Muñoz J, Pumera M. 3D-printed biosensors for electrochemical and optical applications. TrAC Trends in Analytical Chemistry 2020;128:115933. [DOI: 10.1016/j.trac.2020.115933] [Cited by in Crossref: 27] [Cited by in F6Publishing: 10] [Article Influence: 13.5] [Reference Citation Analysis]
2 Liu YL, Chen Y, Fan WT, Cao P, Yan J, Zhao XZ, Dong WG, Huang WH. Mechanical Distension Induces Serotonin Release from Intestine as Revealed by Stretchable Electrochemical Sensing. Angew Chem Int Ed Engl 2020;59:4075-81. [PMID: 31829491 DOI: 10.1002/anie.201913953] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
3 Lin T, Xu Y, Zhao A, He W, Xiao F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339461] [Reference Citation Analysis]
4 Nehru L, Chinnathambi S, Fazio E, Neri F, Leonardi SG, Bonavita A, Neri G. Electrochemical Sensing of Serotonin by a Modified MnO2-Graphene Electrode. Biosensors (Basel) 2020;10:E33. [PMID: 32252484 DOI: 10.3390/bios10040033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
5 Tully JJ, Meloni GN. A Scientist’s Guide to Buying a 3D Printer: How to Choose the Right Printer for Your Laboratory. Anal Chem 2020;92:14853-60. [DOI: 10.1021/acs.analchem.0c03299] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
6 O'neil GD. Toward single-step production of functional electrochemical devices using 3D printing: Progress, challenges, and opportunities. Current Opinion in Electrochemistry 2020;20:60-5. [DOI: 10.1016/j.coelec.2020.02.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
7 Rocha RG, Ribeiro JS, Santana MHP, Richter EM, Muñoz RAA. 3D-printing for forensic chemistry: voltammetric determination of cocaine on additively manufactured graphene-polylactic acid electrodes. Anal Methods 2021;13:1788-94. [PMID: 33885677 DOI: 10.1039/d1ay00181g] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Abdalla A, Patel BA. 3D-printed electrochemical sensors: A new horizon for measurement of biomolecules. Current Opinion in Electrochemistry 2020;20:78-81. [DOI: 10.1016/j.coelec.2020.04.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 7.5] [Reference Citation Analysis]
9 Liu Y, Chen Y, Fan W, Cao P, Yan J, Zhao X, Dong W, Huang W. Mechanical Distension Induces Serotonin Release from Intestine as Revealed by Stretchable Electrochemical Sensing. Angew Chem 2020;132:4104-10. [DOI: 10.1002/ange.201913953] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Rabboh FM, O'Neil GD. Voltammetric pH Measurements in Unadulterated Foodstuffs, Urine, and Serum with 3D-Printed Graphene/Poly(Lactic Acid) Electrodes. Anal Chem 2020;92:14999-5006. [PMID: 33140638 DOI: 10.1021/acs.analchem.0c02902] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
11 Shahriari D, Rosenfeld D, Anikeeva P. Emerging Frontier of Peripheral Nerve and Organ Interfaces. Neuron 2020;108:270-85. [PMID: 33120023 DOI: 10.1016/j.neuron.2020.09.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]