BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Karpova EV, Shcherbacheva EV, Galushin AA, Vokhmyanina DV, Karyakina EE, Karyakin AA. Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor. Anal Chem 2019;91:3778-83. [DOI: 10.1021/acs.analchem.8b05928] [Cited by in Crossref: 58] [Cited by in F6Publishing: 39] [Article Influence: 19.3] [Reference Citation Analysis]
Number Citing Articles
1 Yu M, Li Y, Hu Y, Tang L, Yang F, Lv W, Zhang Z, Zhang G. Gold nanostructure-programmed flexible electrochemical biosensor for detection of glucose and lactate in sweat. Journal of Electroanalytical Chemistry 2021;882:115029. [DOI: 10.1016/j.jelechem.2021.115029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
2 Xiao J, Liu Y, Su L, Zhao D, Zhao L, Zhang X. Microfluidic Chip-Based Wearable Colorimetric Sensor for Simple and Facile Detection of Sweat Glucose. Anal Chem 2019;91:14803-7. [PMID: 31553565 DOI: 10.1021/acs.analchem.9b03110] [Cited by in Crossref: 48] [Cited by in F6Publishing: 28] [Article Influence: 16.0] [Reference Citation Analysis]
3 Liu Q, Zhong H, Chen M, Zhao C, Liu Y, Xi F, Luo T. Functional nanostructure-loaded three-dimensional graphene foam as a non-enzymatic electrochemical sensor for reagentless glucose detection. RSC Adv 2020;10:33739-46. [DOI: 10.1039/d0ra05553k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
4 Li YL, Liu YH, Chen LS, Xu JL. A Conformable, Gas-Permeable, and Transparent Skin-Like Micromesh Architecture for Glucose Monitoring. Adv Healthc Mater 2021;10:e2100046. [PMID: 34263551 DOI: 10.1002/adhm.202100046] [Reference Citation Analysis]
5 Ahmadian N, Manickavasagan A, Ali A. Comparative assessment of blood glucose monitoring techniques: a review. J Med Eng Technol 2022;:1-10. [PMID: 35895023 DOI: 10.1080/03091902.2022.2100496] [Reference Citation Analysis]
6 Yang K, Isaia B, Brown LJE, Beeby S. E-Textiles for Healthy Ageing. Sensors (Basel) 2019;19:E4463. [PMID: 31618875 DOI: 10.3390/s19204463] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
7 Qiao Y, Liu Q, Lu S, Chen G, Gao S, Lu W, Sun X. High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. J Mater Chem B 2020;8:5411-5. [DOI: 10.1039/d0tb00131g] [Cited by in Crossref: 32] [Cited by in F6Publishing: 1] [Article Influence: 16.0] [Reference Citation Analysis]
8 Gunatilake UB, Garcia-Rey S, Ojeda E, Basabe-Desmonts L, Benito-Lopez F. TiO2 Nanotubes Alginate Hydrogel Scaffold for Rapid Sensing of Sweat Biomarkers: Lactate and Glucose. ACS Appl Mater Interfaces 2021;13:37734-45. [PMID: 34340308 DOI: 10.1021/acsami.1c11446] [Reference Citation Analysis]
9 Han J, Li M, Li H, Li C, Ye J, Yang B. Pt-poly(L-lactic acid) microelectrode-based microsensor for in situ glucose detection in sweat. Biosens Bioelectron 2020;170:112675. [PMID: 33038583 DOI: 10.1016/j.bios.2020.112675] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Komkova MA, Pasquarelli A, Andreev EA, Galushin AA, Karyakin AA. Prussian Blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors. Electrochimica Acta 2020;339:135924. [DOI: 10.1016/j.electacta.2020.135924] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 10.5] [Reference Citation Analysis]
11 Ferrag C, Kerman K. Grand Challenges in Nanomaterial-Based Electrochemical Sensors. Front Sens 2020;1:583822. [DOI: 10.3389/fsens.2020.583822] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Karpova EV, Laptev AI, Andreev EA, Karyakina EE, Karyakin AA. Relationship Between Sweat and Blood Lactate Levels During Exhaustive Physical Exercise. ChemElectroChem 2019;7:191-4. [DOI: 10.1002/celc.201901703] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
13 Phan Q, Jian T, Huang Y, Lai Y, Xiao W, Chen S. Combination of surface plasmon resonance and differential Mueller matrix formalism for noninvasive glucose sensing. Optics and Lasers in Engineering 2020;134:106268. [DOI: 10.1016/j.optlaseng.2020.106268] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Okawara H, Sawada T, Nakashima D, Maeda Y, Minoji S, Morisue T, Katsumata Y, Matsumoto M, Nakamura M, Nagura T. Kinetic changes in sweat lactate following fatigue during constant workload exercise. Physiol Rep 2022;10:e15169. [PMID: 35043587 DOI: 10.14814/phy2.15169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Okawara H, Sawada T, Nakashima D, Maeda Y, Minoji S, Morisue T, Katsumata Y, Matsumoto M, Nakamura M, Nagura T. Realtime Monitoring of Local Sweat Rate Kinetics during Constant-Load Exercise Using Perspiration-Meter with Airflow Compensation System. Sensors 2022;22:5473. [DOI: 10.3390/s22155473] [Reference Citation Analysis]
16 Xuan X, Qian M, Pan L, Lu T, Han L, Yu H, Wan L, Niu Y, Gong S. A longitudinally expanded Ni-based metal-organic framework with enhanced double nickel cation catalysis reaction channels for a non-enzymatic sweat glucose biosensor. J Mater Chem B 2020. [PMID: 32929421 DOI: 10.1039/d0tb01657h] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
17 Mahato K, Wang J. Electrochemical sensors: From the bench to the skin. Sensors and Actuators B: Chemical 2021;344:130178. [DOI: 10.1016/j.snb.2021.130178] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
18 Komkova MA, Eliseev AA, Poyarkov AA, Daboss EV, Evdokimov PV, Eliseev AA, Karyakin AA. Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors. Biosens Bioelectron 2022;202:113970. [PMID: 35032921 DOI: 10.1016/j.bios.2022.113970] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
19 Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz SH, Shim YB, Shiddiky MJA. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 2020;145:4398-420. [PMID: 32436931 DOI: 10.1039/d0an00558d] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
20 Hakala TA, García Pérez A, Wardale M, Ruuth IA, Vänskä RT, Nurminen TA, Kemp E, Boeva ZA, Alakoskela JM, Pettersson-Fernholm K, Hæggström E, Bobacka J. Sampling of fluid through skin with magnetohydrodynamics for noninvasive glucose monitoring. Sci Rep 2021;11:7609. [PMID: 33828144 DOI: 10.1038/s41598-021-86931-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Tabasum H, Gill N, Mishra R, Lone S. Wearable microfluidic-based e-skin sweat sensors. RSC Adv 2022;12:8691-707. [PMID: 35424805 DOI: 10.1039/d1ra07888g] [Reference Citation Analysis]
22 Bolat G, De la Paz E, Azeredo NF, Kartolo M, Kim J, de Loyola E Silva AN, Rueda R, Brown C, Angnes L, Wang J, Sempionatto JR. Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Anal Bioanal Chem 2022. [PMID: 35015101 DOI: 10.1007/s00216-021-03865-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Wei M, Qiao Y, Zhao H, Liang J, Li T, Luo Y, Lu S, Shi X, Lu W, Sun X. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem Commun 2020;56:14553-69. [DOI: 10.1039/d0cc05650b] [Cited by in Crossref: 28] [Cited by in F6Publishing: 1] [Article Influence: 14.0] [Reference Citation Analysis]
24 Sempionatto JR, Moon JM, Wang J. Touch-Based Fingertip Blood-Free Reliable Glucose Monitoring: Personalized Data Processing for Predicting Blood Glucose Concentrations. ACS Sens 2021;6:1875-83. [PMID: 33872007 DOI: 10.1021/acssensors.1c00139] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 34.0] [Reference Citation Analysis]
25 Lipińska W, Siuzdak K, Karczewski J, Dołęga A, Grochowska K. Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed Au-Ti electrode. Sensors and Actuators B: Chemical 2021;330:129409. [DOI: 10.1016/j.snb.2020.129409] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 12.0] [Reference Citation Analysis]
26 Zhang M, Adkins M, Wang Z. Recent Progress on Semiconductor-Interface Facing Clinical Biosensing. Sensors (Basel) 2021;21:3467. [PMID: 34065696 DOI: 10.3390/s21103467] [Reference Citation Analysis]
27 Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev 2020;49:7671-709. [PMID: 33020790 DOI: 10.1039/d0cs00304b] [Cited by in Crossref: 75] [Cited by in F6Publishing: 25] [Article Influence: 37.5] [Reference Citation Analysis]
28 Baghelani M, Abbasi Z, Daneshmand M, Light PE. Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators. Sci Rep 2020;10:12980. [PMID: 32737348 DOI: 10.1038/s41598-020-69547-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 11.5] [Reference Citation Analysis]
29 Ghaffari R, Yang DS, Kim J, Mansour A, Wright JA Jr, Model JB, Wright DE, Rogers JA, Ray TR. State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sens 2021;6:2787-801. [PMID: 34351759 DOI: 10.1021/acssensors.1c01133] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 19.0] [Reference Citation Analysis]
30 Li R, Zhang W, Qin Y, Zhang Y, Zhu X, Li Y, Zhu N, Hou C, Zhang M. Multifunctional Prussian Blue from Nano-Structure Designed to Wearable Sensors Application. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116729] [Reference Citation Analysis]
31 Van Hoovels K, Xuan X, Cuartero M, Gijssel M, Swarén M, Crespo GA. Can Wearable Sweat Lactate Sensors Contribute to Sports Physiology? ACS Sens 2021;6:3496-508. [PMID: 34549938 DOI: 10.1021/acssensors.1c01403] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Brainina KZ, Kazakov YE. Electrochemical Hybrid Methods and Sensors for Antioxidant/Oxidant Activity Monitoring and Their Use as a Diagnostic Tool of Oxidative Stress: Future Perspectives and Challenges. Chemosensors 2020;8:90. [DOI: 10.3390/chemosensors8040090] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Bao C, Niu Q, Cao X, Liu C, Wang H, Lu W. Ni–Fe hybrid nanocubes: an efficient electrocatalyst for non-enzymatic glucose sensing with a wide detection range. New J Chem 2019;43:11135-40. [DOI: 10.1039/c9nj01792e] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
34 Piro B, Mattana G, Noël V. Recent Advances in Skin Chemical Sensors. Sensors (Basel) 2019;19:E4376. [PMID: 31658706 DOI: 10.3390/s19204376] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
35 Adeniyi O, Nwahara N, Mwanza D, Nyokong T, Mashazi P. Nanohybrid electrocatalyst based on cobalt phthalocyanine-carbon nanotube-reduced graphene oxide for ultrasensitive detection of glucose in human saliva. Sensors and Actuators B: Chemical 2021;348:130723. [DOI: 10.1016/j.snb.2021.130723] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
36 Cebedio MC, Rabioglio LA, Gelosi IE, Ribas RA, Uriz AJ, Moreira JC. Analysis and Design of a Microwave Coplanar Sensor for Non-Invasive Blood Glucose Measurements. IEEE Sensors J 2020;20:10572-81. [DOI: 10.1109/jsen.2020.2993182] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
37 Zhang W, Zhu X, Kang M, Xu J, Zuo Y, Sun M, Zhao C, Liu H. Water splitting-assisted electrocatalysis based on dendrimer-encapsulated Au nanoparticles for perspiration glucose analysis. Journal of Electroanalytical Chemistry 2022;912:116254. [DOI: 10.1016/j.jelechem.2022.116254] [Reference Citation Analysis]
38 Karyakin AA. Glucose biosensors for clinical and personal use. Electrochemistry Communications 2021;125:106973. [DOI: 10.1016/j.elecom.2021.106973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
39 Li G, Hao J, Li W, Ma F, Ma T, Gao W, Yu Y, Wen D. Integrating Highly Porous and Flexible Au Hydrogels with Soft-MEMS Technologies for High-Performance Wearable Biosensing. Anal Chem 2021;93:14068-75. [PMID: 34636245 DOI: 10.1021/acs.analchem.1c01581] [Reference Citation Analysis]
40 Komkova MA, Andreeva KD, Zarochintsev AA, Karyakin AA. Nanozymes “Artificial Peroxidase”: Enzyme Oxidase Mixtures for Single‐Step Fabrication of Advanced Electrochemical Biosensors. ChemElectroChem 2021;8:1117-22. [DOI: 10.1002/celc.202100275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
41 Jeerapan I, Sonsa-ard T, Nacapricha D. Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. Chemosensors 2020;8:71. [DOI: 10.3390/chemosensors8030071] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
42 Zhu J, Liu S, Hu Z, Zhang X, Yi N, Tang K, Dexheimer MG, Lian X, Wang Q, Yang J, Gray J, Cheng H. Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens Bioelectron 2021;193:113606. [PMID: 34507206 DOI: 10.1016/j.bios.2021.113606] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Liu Y, Yu Q, Luo X, Yang L, Cui Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst Nanoeng 2021;7:75. [PMID: 34631143 DOI: 10.1038/s41378-021-00302-w] [Reference Citation Analysis]
44 Arakawa T, Tomoto K, Nitta H, Toma K, Takeuchi S, Sekita T, Minakuchi S, Mitsubayashi K. A Wearable Cellulose Acetate-Coated Mouthguard Biosensor for In Vivo Salivary Glucose Measurement. Anal Chem 2020;92:12201-7. [DOI: 10.1021/acs.analchem.0c01201] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 11.5] [Reference Citation Analysis]
45 Paul B, Demuru S, Lafaye C, Saubade M, Briand D. Printed Iontophoretic‐Integrated Wearable Microfluidic Sweat‐Sensing Patch for On‐Demand Point‐Of‐Care Sweat Analysis. Adv Mater Technol 2021;6:2000910. [DOI: 10.1002/admt.202000910] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
46 Daboss EV, Tikhonov DV, Shcherbacheva EV, Karyakin AA. Ultrastable Lactate Biosensor Linearly Responding in Whole Sweat for Noninvasive Monitoring of Hypoxia. Anal Chem 2022. [PMID: 35687799 DOI: 10.1021/acs.analchem.2c02208] [Reference Citation Analysis]
47 Liu B, Dai Q, Liu P, Gopinath SC, Zhang L. Nanostructure-mediated glucose oxidase biofunctionalization for monitoring gestational diabetes. Process Biochemistry 2021;110:19-25. [DOI: 10.1016/j.procbio.2021.07.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Komkova MA, Orlov AK, Galushin AA, Andreev EA, Karyakin AA. Anchoring PQQ-Glucose Dehydrogenase with Electropolymerized Azines for the Most Efficient Bioelectrocatalysis. Anal Chem 2021;93:12116-21. [PMID: 34431658 DOI: 10.1021/acs.analchem.1c02664] [Reference Citation Analysis]
49 Karpova EV, Karyakina EE, Karyakin AA. Wearable non-invasive monitors of diabetes and hypoxia through continuous analysis of sweat. Talanta 2020;215:120922. [DOI: 10.1016/j.talanta.2020.120922] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
50 Ates HC, Nguyen PQ, Gonzalez-macia L, Morales-narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. Nat Rev Mater. [DOI: 10.1038/s41578-022-00460-x] [Reference Citation Analysis]
51 Sun M, Pei X, Xin T, Liu J, Ma C, Cao M, Zhou M. A Flexible Microfluidic Chip-Based Universal Fully Integrated Nanoelectronic System with Point-of-Care Raw Sweat, Tears, or Saliva Glucose Monitoring for Potential Noninvasive Glucose Management. Anal Chem . [DOI: 10.1021/acs.analchem.1c05174] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
52 Omer AE, Shaker G, Safavi-Naeini S, Kokabi H, Alquié G, Deshours F, Shubair RM. Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell CSRR hexagonal configuration. Sci Rep 2020;10:15200. [PMID: 32938996 DOI: 10.1038/s41598-020-72114-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
53 Su H, Sun F, Lu Z, Zhang J, Zhang W, Liu J. A wearable sensing system based on smartphone and diaper to detect urine in-situ for patients with urinary incontinence. Sensors and Actuators B: Chemical 2022;357:131459. [DOI: 10.1016/j.snb.2022.131459] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Lu M, Deng Y, Li Y, Li T, Xu J, Chen S, Wang J. Core-shell MOF@MOF composites for sensitive nonenzymatic glucose sensing in human serum. Analytica Chimica Acta 2020;1110:35-43. [DOI: 10.1016/j.aca.2020.02.023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
55 Chen Q, Zhao Y, Liu Y. Current development in wearable glucose meters. Chinese Chemical Letters 2021;32:3705-17. [DOI: 10.1016/j.cclet.2021.05.043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Manjakkal L, Yin L, Nathan A, Wang J, Dahiya R. Energy Autonomous Sweat-Based Wearable Systems. Adv Mater 2021;33:e2100899. [PMID: 34247412 DOI: 10.1002/adma.202100899] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 21.0] [Reference Citation Analysis]
57 Dervisevic M, Alba M, Prieto-simon B, Voelcker NH. Skin in the diagnostics game: Wearable biosensor nano- and microsystems for medical diagnostics. Nano Today 2020;30:100828. [DOI: 10.1016/j.nantod.2019.100828] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 15.5] [Reference Citation Analysis]
58 Vaquer A, Barón E, de la Rica R. Detection of low glucose levels in sweat with colorimetric wearable biosensors. Analyst 2021;146:3273-9. [PMID: 33999074 DOI: 10.1039/d1an00283j] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Yu Y, Nyein HYY, Gao W, Javey A. Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis. Adv Mater 2020;32:e1902083. [PMID: 31432573 DOI: 10.1002/adma.201902083] [Cited by in Crossref: 119] [Cited by in F6Publishing: 99] [Article Influence: 59.5] [Reference Citation Analysis]
60 Li W, Lin L, Yan D, Jin Y, Xu Y, Li Y, Ma M, Wu Z. Application of a Pseudotargeted MS Method for the Quantification of Glycated Hemoglobin for the Improved Diagnosis of Diabetes Mellitus. Anal Chem 2020;92:3237-45. [DOI: 10.1021/acs.analchem.9b05046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
61 Karpova EV, Karyakin AA. Noninvasive monitoring of diabetes and hypoxia by wearable flow-through biosensors. Current Opinion in Electrochemistry 2020;23:16-20. [DOI: 10.1016/j.coelec.2020.02.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
62 Alhaddad AY, Aly H, Gad H, Al-ali A, Sadasivuni KK, Cabibihan J, Malik RA. Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection. Front Bioeng Biotechnol 2022;10:876672. [DOI: 10.3389/fbioe.2022.876672] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Sempionatto JR, Jeerapan I, Krishnan S, Wang J. Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Anal Chem 2020;92:378-96. [DOI: 10.1021/acs.analchem.9b04668] [Cited by in Crossref: 60] [Cited by in F6Publishing: 40] [Article Influence: 20.0] [Reference Citation Analysis]
64 Nemčeková K, Labuda J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. Mater Sci Eng C Mater Biol Appl 2021;120:111751. [PMID: 33545892 DOI: 10.1016/j.msec.2020.111751] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
65 Alarcón-Segovia LC, Bandodkar AJ, Rogers JA, Rintoul I. Catalytic effects of magnetic and conductive nanoparticles on immobilized glucose oxidase in skin sensors. Nanotechnology 2021;32. [PMID: 34049305 DOI: 10.1088/1361-6528/ac0668] [Reference Citation Analysis]
66 Li Y, Sun J, Mao W, Tang S, Liu K, Qi T, Deng H, Shen W, Chen L, Peng L. Antimony-doped tin oxide nanoparticles as peroxidase mimics for paper-based colorimetric detection of glucose using smartphone read-out. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3506-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]