BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li H, Steckl AJ. Paper Microfluidics for Point-of-Care Blood-Based Analysis and Diagnostics. Anal Chem 2019;91:352-71. [DOI: 10.1021/acs.analchem.8b03636] [Cited by in Crossref: 48] [Cited by in F6Publishing: 34] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Saidykhan J, Selevic L, Cinti S, May JE, Killard AJ. Paper-Based Lateral Flow Device for the Sustainable Measurement of Human Plasma Fibrinogen in Low-Resource Settings. Anal Chem 2021;93:14007-13. [PMID: 34615344 DOI: 10.1021/acs.analchem.1c03665] [Reference Citation Analysis]
2 Jiménez-carvelo AM, Salloum-llergo KD, Cuadros-rodríguez L, Capitán-vallvey LF, Fernández-ramos M. A perfect tandem: chemometric methods and microfluidic colorimetric twin sensors on paper. Beyond the traditional analytical approach. Microchemical Journal 2020;157:104930. [DOI: 10.1016/j.microc.2020.104930] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Wu H, Ma Z, Wei C, Jiang M, Hong X, Li Y, Chen D, Huang X. Three-Dimensional Microporous Hollow Fiber Membrane Microfluidic Device Integrated with Selective Separation and Capillary Self-Driven for Point-of-Care Testing. Anal Chem 2020;92:6358-65. [DOI: 10.1021/acs.analchem.9b05342] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Jiang H, Guo Q, Zhang C, Sun Z, Weng X. Microfluidic origami nano-aptasensor for peanut allergen Ara h1 detection. Food Chem 2021;365:130511. [PMID: 34237563 DOI: 10.1016/j.foodchem.2021.130511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Li Z, Li Y, Zhan L, Meng L, Huang X, Wang T, Li Y, Nie Z. Point-of-Care Test Paper for Exhaled Breath Aldehyde Analysis via Mass Spectrometry. Anal Chem 2021;93:9158-65. [PMID: 34162204 DOI: 10.1021/acs.analchem.1c01011] [Reference Citation Analysis]
6 Chen X, Wang M, Zhao G. Point-of-Care Assessment of Hemostasis with a Love-Mode Surface Acoustic Wave Sensor. ACS Sens 2020;5:282-91. [PMID: 31903758 DOI: 10.1021/acssensors.9b02382] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
7 Landry V, Coburn P, Kost K, Liu X, Li-jessen NYK. Diagnostic Accuracy of Liquid Biomarkers in Airway Diseases: Toward Point-of-Care Applications. Front Med 2022;9:855250. [DOI: 10.3389/fmed.2022.855250] [Reference Citation Analysis]
8 Zhang J, Qiu X, Huang L, Fan Y, Miao G, Zhang L, Xu C, Liu L, Dong X. Non-woven fabric-based microfluidic devices with hydrophobic wax barrier. Microsyst Technol 2020;26:1637-42. [DOI: 10.1007/s00542-019-04704-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Mani NK, Das SS, Dawn S, Chakraborty S. Electro-kinetically driven route for highly sensitive blood pathology on a paper-based device. Electrophoresis 2020;41:615-20. [PMID: 31891191 DOI: 10.1002/elps.201900356] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
10 Yuan H, Chiu PY, Chen CF. Paper-based analytical devices for point-of-care blood tests. Biomicrofluidics 2021;15:041303. [PMID: 34326913 DOI: 10.1063/5.0055601] [Reference Citation Analysis]
11 Tomimuro K, Tenda K, Ni Y, Hiruta Y, Merkx M, Citterio D. Thread-Based Bioluminescent Sensor for Detecting Multiple Antibodies in a Single Drop of Whole Blood. ACS Sens 2020;5:1786-94. [PMID: 32441095 DOI: 10.1021/acssensors.0c00564] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 14.5] [Reference Citation Analysis]
12 He R, Tseng H, Lee H, Liu Y, Koshevoy IO, Pan S, Ho M. Paper-based microfluidic devices based on 3D network polymer hydrogel for the determination of glucose in human whole blood. RSC Adv 2019;9:32367-74. [DOI: 10.1039/c9ra04278d] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Liu H, Thi Dao TN, Koo B, Jang YO, Shin Y. Trends and challenges of nanotechnology in self-test at home. TrAC Trends in Analytical Chemistry 2021;144:116438. [DOI: 10.1016/j.trac.2021.116438] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Weng X, Fu Z, Zhang C, Jiang W, Jiang H. A Portable 3D Microfluidic Origami Biosensor for Cortisol Detection in Human Sweat. Anal Chem 2022. [PMID: 35170939 DOI: 10.1021/acs.analchem.1c04508] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Tawfik SM, Elmasry MR, Sharipov M, Azizov S, Lee CH, Lee Y. Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection. Biosensors and Bioelectronics 2020;160:112211. [DOI: 10.1016/j.bios.2020.112211] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Erenas MM, Carrillo-aguilera B, Cantrell K, Gonzalez-chocano S, Perez de Vargas-sansalvador IM, de Orbe-payá I, Capitan-vallvey LF. Real time monitoring of glucose in whole blood by smartphone. Biosensors and Bioelectronics 2019;136:47-52. [DOI: 10.1016/j.bios.2019.04.024] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
17 Wu H, Shi C, Zhu Q, Li Y, Xu Z, Wei C, Chen D, Huang X. Capillary-driven blood separation and in-situ electrochemical detection based on 3D conductive gradient hollow fiber membrane. Biosensors and Bioelectronics 2021;171:112722. [DOI: 10.1016/j.bios.2020.112722] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
18 Fan K, Wang X, Yang H, Gao L, Han G, Zhou L, Fang S. Semiquantitative naked-eye detection of Cu( ii ) with a standard colorimetric card via a hydrogel-coated paper sensor. Anal Methods 2020;12:1561-6. [DOI: 10.1039/d0ay00038h] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
19 Boegner DJ, Everitt ML, White IM. Thermally Responsive Alkane Partitions for Assay Automation. ACS Appl Mater Interfaces 2022. [PMID: 35147027 DOI: 10.1021/acsami.2c00493] [Reference Citation Analysis]
20 Dai J, Zhang H, Huang C, Chen Z, Han A. A Gel-Based Separation-Free Point-of-Care Device for Whole Blood Glucose Detection. Anal Chem 2020;92:16122-9. [DOI: 10.1021/acs.analchem.0c03801] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
21 Li Q, Ren S, Peng Y, Lv Y, Wang W, Wang Z, Gao Z. A Colorimetric Strip for Rapid Detection and Real-Time Monitoring of Histamine in Fish Based on Self-Assembled Polydiacetylene Vesicles. Anal Chem 2020;92:1611-7. [DOI: 10.1021/acs.analchem.9b04927] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
22 Liu J, Kong X, Wang H, Zhang Y, Fan Y. Roll-to-roll wax transfer for rapid and batch fabrication of paper-based microfluidics. Microfluid Nanofluid 2020;24. [DOI: 10.1007/s10404-019-2310-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
23 Feng Y, Hu S, Wang Y, Song X, Cao C, Wang K, Jing C, Zhang G, Liu W. A multifunctional fluorescent probe for visualizing H2S in wastewater with portable smartphone via fluorescent paper strip and sensing GSH in vivo. Journal of Hazardous Materials 2021;406:124523. [DOI: 10.1016/j.jhazmat.2020.124523] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
24 Kim H, Tran MV, Petryayeva E, Solodova O, Susumu K, Oh E, Medintz IL, Algar WR. Affinity Immobilization of Semiconductor Quantum Dots and Metal Nanoparticles on Cellulose Paper Substrates. ACS Appl Mater Interfaces 2020;12:53462-74. [PMID: 33180467 DOI: 10.1021/acsami.0c14559] [Reference Citation Analysis]
25 Molloy A, Harrison J, McGrath JS, Owen Z, Smith C, Liu X, Li X, Cox JAG. Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery. Microorganisms 2021;9:2330. [PMID: 34835455 DOI: 10.3390/microorganisms9112330] [Reference Citation Analysis]
26 Mao K, Min X, Zhang H, Zhang K, Cao H, Guo Y, Yang Z. Paper-based microfluidics for rapid diagnostics and drug delivery. J Control Release 2020;322:187-99. [PMID: 32169536 DOI: 10.1016/j.jconrel.2020.03.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
27 Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Reference Citation Analysis]
28 Liu D, Wang Y, Li X, Li M, Wu Q, Song Y, Zhu Z, Yang C. Integrated microfluidic devices for in vitro diagnostics at point of care. Aggregate. [DOI: 10.1002/agt2.184] [Reference Citation Analysis]
29 Hamidon NN, Salentijn GI, Verpoorte E. Enhanced passive mixing for paper microfluidics. RSC Adv 2021;11:25677-85. [PMID: 34354827 DOI: 10.1039/d1ra04916j] [Reference Citation Analysis]
30 Liu J, Zhang B, Zhang Y, Fan Y. Fluid control with hydrophobic pillars in paper-based microfluidics. J Micromech Microeng 2021;31:127002. [DOI: 10.1088/1361-6439/ac35c9] [Reference Citation Analysis]
31 Li M, Zeng Y, Qu X, Jalalah M, Alsareii SA, Li C, Harraz FA, Li G. Biocatalytic CsPbX3 Perovskite Nanocrystals: A Self-Reporting Nanoprobe for Metabolism Analysis. Small 2021;17:e2103255. [PMID: 34605143 DOI: 10.1002/smll.202103255] [Reference Citation Analysis]
32 Soin N, Fishlock SJ, Kelsey C, Smith S. Triboelectric Effect Enabled Self-Powered, Point-of-Care Diagnostics: Opportunities for Developing ASSURED and REASSURED Devices. Micromachines (Basel) 2021;12:337. [PMID: 33810006 DOI: 10.3390/mi12030337] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Modha S, Shen Y, Chamouni H, Mulchandani A, Tsutsui H. Laser-etched grooves for rapid fluid delivery for a paper-based chemiresistive biosensor. Biosens Bioelectron 2021;180:113090. [PMID: 33662845 DOI: 10.1016/j.bios.2021.113090] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zhang X, Liu S, Wei X, Yu YL, Wang JH. A Novel Pretreatment Device Integrating Magnetic-Assisted Dispersive Extraction and Ultrasonic Spray Separation for Speciation Analysis of Arsenic in Whole Blood by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry. Anal Chem 2021;93:10577-83. [PMID: 34283582 DOI: 10.1021/acs.analchem.1c01745] [Reference Citation Analysis]
35 Wang X, Zhang Q, Kang Q, Zou G, Shen D. A high sensitive single luminophore ratiometric electrochemiluminescence immunosensor in combined with anodic stripping voltammetry. Electrochimica Acta 2020;336:135725. [DOI: 10.1016/j.electacta.2020.135725] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Li CY, Zheng B, Lu LL, Fang WK, Zheng MQ, Gao JL, Yuheng L, Pang DW, Tang HW. Biomimetic Chip Enhanced Time-Gated Luminescent CRISPR-Cas12a Biosensors under Functional DNA Regulation. Anal Chem 2021;93:12514-23. [PMID: 34490773 DOI: 10.1021/acs.analchem.1c01403] [Reference Citation Analysis]
37 Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal Chem 2020;92:150-68. [PMID: 31721565 DOI: 10.1021/acs.analchem.9b04986] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
38 Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. Lab Chip 2021;21:1433-53. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Jia Y, Sun H, Dong H, Wang C, Lin X, Dong D. Scalable and parallelized biochemical assays in paper devices integrated with a programmable binary valve matrix. Sensors and Actuators B: Chemical 2020;321:128466. [DOI: 10.1016/j.snb.2020.128466] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
40 Kudo H, Maejima K, Hiruta Y, Citterio D. Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of Lactoferrin. SLAS TECHNOLOGY: Translating Life Sciences Innovation 2020;25:47-57. [DOI: 10.1177/2472630319884031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
41 Samae M, Chatpun S, Chirasatitsin S. Hemagglutination Detection with Paper-Plastic Hybrid Passive Microfluidic Chip. Micromachines (Basel) 2021;12:1533. [PMID: 34945381 DOI: 10.3390/mi12121533] [Reference Citation Analysis]
42 Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2021. [PMID: 34897302 DOI: 10.1039/c9cs00621d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
43 Raj N, Breedveld V, Hess DW. Semi-enclosed microfluidic device on glass-fiber membrane with enhanced signal quality for colorimetric analyte detection in whole blood. Microfluid Nanofluid 2021;25. [DOI: 10.1007/s10404-021-02447-6] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Wang H, Yang L, Chu S, Liu B, Zhang Q, Zou L, Yu S, Jiang C. Semiquantitative Visual Detection of Lead Ions with a Smartphone via a Colorimetric Paper-Based Analytical Device. Anal Chem 2019;91:9292-9. [DOI: 10.1021/acs.analchem.9b02297] [Cited by in Crossref: 103] [Cited by in F6Publishing: 64] [Article Influence: 34.3] [Reference Citation Analysis]
45 Locatelli M, Tartaglia A, D'ambrosio F, Ramundo P, Ulusoy H, Furton K, Kabir A. Biofluid sampler: A new gateway for mail-in-analysis of whole blood samples. Journal of Chromatography B 2020;1143:122055. [DOI: 10.1016/j.jchromb.2020.122055] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
46 Hong H, Song JM, Yeom E. Micro-vibrational erythrocyte sedimentation rate (ESR) for sensitive measurement of erythrocyte aggregation. J Vis 2021;24:749-60. [DOI: 10.1007/s12650-020-00728-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Modha S, Castro C, Tsutsui H. Recent developments in flow modeling and fluid control for paper-based microfluidic biosensors. Biosens Bioelectron 2021;178:113026. [PMID: 33545552 DOI: 10.1016/j.bios.2021.113026] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Chaikhan P, Udnan Y, Sananmuang R, Ampiah-bonney RJ, Chuachuad Chaiyasith W. A low-cost microfluidic paper-based analytical device (µPAD) with column chromatography preconcentration for the determination of paraquat in vegetable samples. Microchemical Journal 2020;159:105355. [DOI: 10.1016/j.microc.2020.105355] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Jiang R, Zhang Y, Zhang Q, Li L, Yang L. Carbon Dot/Gold Nanocluster-Based Fluorescent Colorimetric Paper Strips for Quantitative Detection of Iodide Ions in Urine. ACS Appl Nano Mater 2021;4:9760-7. [DOI: 10.1021/acsanm.1c02167] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
50 Mena SE, Li Y, McCormick J, McCracken B, Colmenero C, Ward K, Burns MA. A droplet-based microfluidic viscometer for the measurement of blood coagulation. Biomicrofluidics 2020;14:014109. [PMID: 31966348 DOI: 10.1063/1.5128255] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Frantz E, Li H, Steckl AJ. Quantitative hematocrit measurement of whole blood in a point-of-care lateral flow device using a smartphone flow tracking app. Biosens Bioelectron 2020;163:112300. [PMID: 32568698 DOI: 10.1016/j.bios.2020.112300] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
52 Lookadoo DB, Schonhorn JE, Harpaldas H, Uherek CM, Schatz P, Lindgren A, Depa M, Kumar AA. Paper-Based Optode Devices (PODs) for Selective Quantification of Potassium in Biological Fluids. Anal Chem 2021;93:9383-9. [PMID: 34192456 DOI: 10.1021/acs.analchem.1c00794] [Reference Citation Analysis]
53 Morikawa Y, Nishiwaki K, Suzuki S, Yasaka N, Okada Y, Nakanishi I. A new chemosensor for cyanide in blood based on the Pd complex of 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol. Analyst 2020;145:7759-64. [PMID: 33006340 DOI: 10.1039/d0an01554g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
54 Fu G, Li X, Wang W, Hou R. Multiplexed tri-mode visual outputs of immunoassay signals on a clip-magazine-assembled photothermal biosensing disk. Biosens Bioelectron 2020;170:112646. [PMID: 33032199 DOI: 10.1016/j.bios.2020.112646] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]