BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zaryanov NV, Nikitina VN, Karpova EV, Karyakina EE, Karyakin AA. Nonenzymatic Sensor for Lactate Detection in Human Sweat. Anal Chem 2017;89:11198-202. [PMID: 29065687 DOI: 10.1021/acs.analchem.7b03662] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 Liu N, Wang R, Gao S, Zhang R, Fan F, Ma Y, Luo X, Ding D, Wu W. High-Performance Piezo-Electrocatalytic Sensing of Ascorbic Acid with Nanostructured Wurtzite Zinc Oxide. Adv Mater 2021;33:e2105697. [PMID: 34935214 DOI: 10.1002/adma.202105697] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Rattu G, Krishna PM. TiO2 nanoparticles reagent based nonenzymatic label-free optical sensor for the rapid detection of L-lactate in apple juice. Sensors and Actuators Reports 2021;3:100067. [DOI: 10.1016/j.snr.2021.100067] [Reference Citation Analysis]
3 Karpova EV, Laptev AI, Andreev EA, Karyakina EE, Karyakin AA. Relationship Between Sweat and Blood Lactate Levels During Exhaustive Physical Exercise. ChemElectroChem 2019;7:191-4. [DOI: 10.1002/celc.201901703] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
4 Xiao J, Liu Y, Su L, Zhao D, Zhao L, Zhang X. Microfluidic Chip-Based Wearable Colorimetric Sensor for Simple and Facile Detection of Sweat Glucose. Anal Chem 2019;91:14803-7. [PMID: 31553565 DOI: 10.1021/acs.analchem.9b03110] [Cited by in Crossref: 48] [Cited by in F6Publishing: 28] [Article Influence: 16.0] [Reference Citation Analysis]
5 Khan A, Winder M, Hossain G. Modified graphene-based nanocomposite material for smart textile biosensor to detect lactate from human sweat. Biosensors and Bioelectronics: X 2022;10:100103. [DOI: 10.1016/j.biosx.2021.100103] [Reference Citation Analysis]
6 Md Shakhih MF, Rosslan AS, Noor AM, Ramanathan S, Lazim AM, Wahab AA. Review-Enzymatic and Non-Enzymatic Electrochemical Sensor for Lactate Detection in Human Biofluids. J Electrochem Soc 2021;168:067502. [DOI: 10.1149/1945-7111/ac0360] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Khattab TA, Dacrory S, Abou-yousef H, Kamel S. Smart microfibrillated cellulose as swab sponge-like aerogel for real-time colorimetric naked-eye sweat monitoring. Talanta 2019;205:120166. [DOI: 10.1016/j.talanta.2019.120166] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 12.7] [Reference Citation Analysis]
8 Ma H, Tian Y, Jiao A, Wang C, Zhang M, Zheng L, Li S, Chen M. Silk fibroin-decorated with tunable Au/Ag nanodendrites: A plastic near-infrared SERS substrate with periodic microstructures for ultra-sensitive monitoring of lactic acid in human sweat. Vibrational Spectroscopy 2022;118:103330. [DOI: 10.1016/j.vibspec.2021.103330] [Reference Citation Analysis]
9 Khan S, Ali S, Bermak A. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications. Sensors (Basel) 2019;19:E1230. [PMID: 30862062 DOI: 10.3390/s19051230] [Cited by in Crossref: 75] [Cited by in F6Publishing: 30] [Article Influence: 25.0] [Reference Citation Analysis]
10 Zhang Q, Jiang D, Xu C, Ge Y, Liu X, Wei Q, Huang L, Ren X, Wang C, Wang Y. Wearable electrochemical biosensor based on molecularly imprinted Ag nanowires for noninvasive monitoring lactate in human sweat. Sensors and Actuators B: Chemical 2020;320:128325. [DOI: 10.1016/j.snb.2020.128325] [Cited by in Crossref: 24] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
11 Zavolskova MD, Nikitina VN, Maksimova ED, Karyakina EE, Karyakin AA. Constant Potential Amperometric Flow-Injection Analysis of Ions and Neutral Molecules Transduced by Electroactive (Conductive) Polymers. Anal Chem 2019;91:7495-9. [PMID: 31117405 DOI: 10.1021/acs.analchem.9b00934] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Rattu G, Khansili N, Maurya VK, Krishna PM. Lactate detection sensors for food, clinical and biological applications: a review. Environ Chem Lett 2021;19:1135-52. [DOI: 10.1007/s10311-020-01106-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
13 O Kare SP, Das D, Chaudhury K, Das S. Hand-drawn electrode based disposable paper chip for artificial sweat analysis using impedance spectroscopy. Biomed Microdevices 2021;23:42. [PMID: 34468895 DOI: 10.1007/s10544-021-00578-9] [Reference Citation Analysis]
14 Zhu C, Xue H, Zhao H, Fei T, Liu S, Chen Q, Gao B, Zhang T. A dual-functional polyaniline film-based flexible electrochemical sensor for the detection of pH and lactate in sweat of the human body. Talanta 2022;242:123289. [DOI: 10.1016/j.talanta.2022.123289] [Reference Citation Analysis]
15 Bettucci O, Matrone GM, Santoro F. Conductive Polymer‐Based Bioelectronic Platforms toward Sustainable and Biointegrated Devices: A Journey from Skin to Brain across Human Body Interfaces. Adv Materials Technologies 2022;7:2100293. [DOI: 10.1002/admt.202100293] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
16 Luo TT, Sun ZH, Li CX, Feng JL, Xiao ZX, Li WD. Monitor for lactate in perspiration. J Physiol Sci 2021;71:26. [PMID: 34445952 DOI: 10.1186/s12576-021-00811-3] [Reference Citation Analysis]
17 Mugo SM, Alberkant J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal Bioanal Chem 2020;412:1825-33. [PMID: 32002581 DOI: 10.1007/s00216-020-02430-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
18 Yang C, Yu S, Yang Q, Wang Q, Xie S, Yang H. Graphene Supported Platinum Nanoparticles Modified Electrode and Its Enzymatic Biosensing for Lactic Acid. J Electrochem Soc 2018;165:B665-8. [DOI: 10.1149/2.0341814jes] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
19 Wang Z, Shin J, Park J, Lee H, Kim D, Liu H. Engineering Materials for Electrochemical Sweat Sensing. Adv Funct Mater 2021;31:2008130. [DOI: 10.1002/adfm.202008130] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
20 Amin S, Tahira A, Solangi A, Mazzaro R, Ibupoto ZH, Vomiero A. A sensitive enzyme-free lactic acid sensor based on NiO nanoparticles for practical applications. Anal Methods 2019;11:3578-83. [DOI: 10.1039/c9ay00516a] [Cited by in Crossref: 18] [Article Influence: 6.0] [Reference Citation Analysis]
21 Khan MRR, Khalilian A, Seo J, Oh S, Thakre A, An TK, Lee HS. Highly Reliable Passive RFID-Based Inductor–Capacitor Sensory System Strengthened by Solvatochromism for Fast and Wide-Range Lactate Detection. IEEE Sensors J 2022;22:12228-36. [DOI: 10.1109/jsen.2022.3174210] [Reference Citation Analysis]
22 Falk M, Psotta C, Cirovic S, Shleev S. Non-Invasive Electrochemical Biosensors Operating in Human Physiological Fluids. Sensors (Basel) 2020;20:E6352. [PMID: 33171750 DOI: 10.3390/s20216352] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Van Hoovels K, Xuan X, Cuartero M, Gijssel M, Swarén M, Crespo GA. Can Wearable Sweat Lactate Sensors Contribute to Sports Physiology? ACS Sens 2021;6:3496-508. [PMID: 34549938 DOI: 10.1021/acssensors.1c01403] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Rattu G, Murali Krishna P. Development of non‐enzymatic ZnO nanocomposite‐based optical sensor for l ‐lactate detection in tomato samples. Int J Food Sci Technol 2021;56:4328-37. [DOI: 10.1111/ijfs.15077] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
25 Rattu G, Murali Krishna P. Enzyme-free colorimetric nanosensor for the rapid detection of lactic acid in food quality analysis. Journal of Agriculture and Food Research 2022;7:100268. [DOI: 10.1016/j.jafr.2022.100268] [Reference Citation Analysis]
26 Harito C, Utari L, Putra BR, Yuliarto B, Purwanto S, Zaidi SZJ, Bavykin DV, Marken F, Walsh FC. Review—The Development of Wearable Polymer-Based Sensors: Perspectives. J Electrochem Soc 2020;167:037566. [DOI: 10.1149/1945-7111/ab697c] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
27 Arivazhagan M, Maduraiveeran G. Ultra-fine nickel sulfide nanoclusters @ nickel sulfide microsphere as enzyme-free electrode materials for sensitive detection of lactic acid. Journal of Electroanalytical Chemistry 2020;874:114465. [DOI: 10.1016/j.jelechem.2020.114465] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
28 Ozcelikay G, Kaya S, Ozkan E, Cetinkaya A, Nemutlu E, Kır S, Ozkan S. Sensor-based MIP technologies for targeted metabolomics analysis. TrAC Trends in Analytical Chemistry 2022;146:116487. [DOI: 10.1016/j.trac.2021.116487] [Reference Citation Analysis]
29 Xiao H, Cao L, Qin H, Wei S, Gu M, Zhao F, Chen Z. Non-enzymatic lactic acid sensor based on AuPtNPs functionalized MoS2 nanosheet as electrode modified materials. Journal of Electroanalytical Chemistry 2021;903:115806. [DOI: 10.1016/j.jelechem.2021.115806] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Karpova EV, Shcherbacheva EV, Galushin AA, Vokhmyanina DV, Karyakina EE, Karyakin AA. Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor. Anal Chem 2019;91:3778-83. [DOI: 10.1021/acs.analchem.8b05928] [Cited by in Crossref: 58] [Cited by in F6Publishing: 39] [Article Influence: 19.3] [Reference Citation Analysis]
31 Chung M, Fortunato G, Radacsi N. Wearable flexible sweat sensors for healthcare monitoring: a review. J R Soc Interface 2019;16:20190217. [PMID: 31594525 DOI: 10.1098/rsif.2019.0217] [Cited by in Crossref: 78] [Cited by in F6Publishing: 49] [Article Influence: 26.0] [Reference Citation Analysis]
32 Arakawa T, Tomoto K, Nitta H, Toma K, Takeuchi S, Sekita T, Minakuchi S, Mitsubayashi K. A Wearable Cellulose Acetate-Coated Mouthguard Biosensor for In Vivo Salivary Glucose Measurement. Anal Chem 2020;92:12201-7. [DOI: 10.1021/acs.analchem.0c01201] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 11.5] [Reference Citation Analysis]
33 Kalasin S, Sangnuang P, Surareungchai W. Satellite-Based Sensor for Environmental Heat-Stress Sweat Creatinine Monitoring: The Remote Artificial Intelligence-Assisted Epidermal Wearable Sensing for Health Evaluation. ACS Biomater Sci Eng 2021;7:322-34. [DOI: 10.1021/acsbiomaterials.0c01459] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Zeglio E, Rutz AL, Winkler TE, Malliaras GG, Herland A. Conjugated Polymers for Assessing and Controlling Biological Functions. Adv Mater 2019;31:e1806712. [PMID: 30861237 DOI: 10.1002/adma.201806712] [Cited by in Crossref: 93] [Cited by in F6Publishing: 71] [Article Influence: 31.0] [Reference Citation Analysis]
35 Nasiri S, Khosravani MR. Progress and challenges in fabrication of wearable sensors for health monitoring. Sensors and Actuators A: Physical 2020;312:112105. [DOI: 10.1016/j.sna.2020.112105] [Cited by in Crossref: 32] [Cited by in F6Publishing: 3] [Article Influence: 16.0] [Reference Citation Analysis]
36 Xuan X, Pérez-Ràfols C, Chen C, Cuartero M, Crespo GA. Lactate Biosensing for Reliable On-Body Sweat Analysis. ACS Sens 2021;6:2763-71. [PMID: 34228919 DOI: 10.1021/acssensors.1c01009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
37 Mou L, Xia Y, Jiang X. Epidermal Sensor for Potentiometric Analysis of Metabolite and Electrolyte. Anal Chem 2021;93:11525-31. [PMID: 34378909 DOI: 10.1021/acs.analchem.1c01940] [Reference Citation Analysis]
38 Choi YM, Lim H, Lee HN, Park YM, Park JS, Kim HJ. Selective Nonenzymatic Amperometric Detection of Lactic Acid in Human Sweat Utilizing a Multi-Walled Carbon Nanotube (MWCNT)-Polypyrrole Core-Shell Nanowire. Biosensors (Basel) 2020;10:E111. [PMID: 32872302 DOI: 10.3390/bios10090111] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
39 Liu Y, Cao Y, Zhang C, Ye C, Bian Q, Cheng X, Xia H, Zheng J, Liu H. A novel colorimetric method for H2O2 sensing and its application: Fe2+-catalyzed H2O2 prevents aggregation of AuNPs by oxidizing cysteine (FeHOAuC). Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339840] [Reference Citation Analysis]
40 Wei J, Xie X, Chang W, Yang Z, Liu Y. Ultrasensitive photoelectrochemical detection of microcystin-LR based on hybridization chain reaction assisted exciton-plasmon interaction and enzymatic biocatalytic precipitation. Sensors and Actuators B: Chemical 2018;276:180-8. [DOI: 10.1016/j.snb.2018.08.099] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
41 Fuoco T, Cuartero M, Parrilla M, García-Guzmán JJ, Crespo GA, Finne-Wistrand A. Capturing the Real-Time Hydrolytic Degradation of a Library of Biomedical Polymers by Combining Traditional Assessment and Electrochemical Sensors. Biomacromolecules 2021;22:949-60. [PMID: 33502851 DOI: 10.1021/acs.biomac.0c01621] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Crapnell RD, Dempsey-hibbert NC, Peeters M, Tridente A, Banks CE. Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. Talanta Open 2020;2:100018. [DOI: 10.1016/j.talo.2020.100018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 9.5] [Reference Citation Analysis]
43 Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021;26:748. [PMID: 33535493 DOI: 10.3390/molecules26030748] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
44 Zhou J, Men D, Zhang X. Progress in wearable sweat sensors and their applications. Chinese Journal of Analytical Chemistry 2022;50:87-96. [DOI: 10.1016/j.cjac.2021.11.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
45 Schuck A, Kim HE, Moreira JK, Lora PS, Kim YS. A Graphene-Based Enzymatic Biosensor Using a Common-Gate Field-Effect Transistor for L-Lactic Acid Detection in Blood Plasma Samples. Sensors (Basel) 2021;21:1852. [PMID: 33800892 DOI: 10.3390/s21051852] [Reference Citation Analysis]
46 Brainina KZ, Markina MG, Stozhko NY. Optimized Potentiometric Assay for Non-invasive Investigation of Skin Antioxidant Activity. Electroanalysis 2018;30:2405-12. [DOI: 10.1002/elan.201800309] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
47 Arivazhagan M, Manova Santhosh Y, Maduraiveeran G. Non-Enzymatic Glucose Detection Based on NiS Nanoclusters@NiS Nanosphere in Human Serum and Urine. Micromachines (Basel) 2021;12:403. [PMID: 33916480 DOI: 10.3390/mi12040403] [Reference Citation Analysis]
48 Lin T, Xu Y, Zhao A, He W, Xiao F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339461] [Reference Citation Analysis]
49 Moonen EJ, Haakma JR, Peri E, Pelssers E, Mischi M, den Toonder JM. Wearable sweat sensing for prolonged, semicontinuous, and nonobtrusive health monitoring. View 2020;1:20200077. [DOI: 10.1002/viw.20200077] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
50 Andreev EA, Komkova MA, Nikitina VN, Karyakin AA. Reagentless Impedimetric Sensors Based on Aminophenylboronic Acids. J Anal Chem 2019;74:153-71. [DOI: 10.1134/s1061934819010040] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]