BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Soto RJ, Hall JR, Brown MD, Taylor JB, Schoenfisch MH. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal Chem 2017;89:276-99. [PMID: 28105839 DOI: 10.1021/acs.analchem.6b04251] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Weltin A, Ganatra D, König K, Joseph K, Hofmann UG, Urban GA, Kieninger J. New life for old wires: electrochemical sensor method for neural implants. J Neural Eng 2020;17:016007. [DOI: 10.1088/1741-2552/ab4c69] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
2 Zhang D, Chen Q, Shi C, Chen M, Ma K, Wan J, Liu R. Dealing with the Foreign‐Body Response to Implanted Biomaterials: Strategies and Applications of New Materials. Adv Funct Mater 2021;31:2007226. [DOI: 10.1002/adfm.202007226] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 18.5] [Reference Citation Analysis]
3 Weltin A, Kieninger J. Electrochemical methods for neural interface electrodes. J Neural Eng 2021;18. [PMID: 34547734 DOI: 10.1088/1741-2552/ac28d5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wang G, Han R, Li Q, Han Y, Luo X. Electrochemical Biosensors Capable of Detecting Biomarkers in Human Serum with Unique Long-Term Antifouling Abilities Based on Designed Multifunctional Peptides. Anal Chem 2020;92:7186-93. [DOI: 10.1021/acs.analchem.0c00738] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 8.5] [Reference Citation Analysis]
5 Rawson TM, Wilson RC, O'Hare D, Herrero P, Kambugu A, Lamorde M, Ellington M, Georgiou P, Cass A, Hope WW, Holmes AH. Optimizing antimicrobial use: challenges, advances and opportunities. Nat Rev Microbiol 2021. [PMID: 34158654 DOI: 10.1038/s41579-021-00578-9] [Reference Citation Analysis]
6 Wang B, Yang P, Ding Y, Qi H, Gao Q, Zhang C. Improvement of the Biocompatibility and Potential Stability of Chronically Implanted Electrodes Incorporating Coating Cell Membranes. ACS Appl Mater Interfaces 2019;11:8807-17. [DOI: 10.1021/acsami.8b20542] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
7 Huang H, Li T, Jiang M, Wei C, Ma S, Chen D, Tong W, Huang X. Construction of flexible enzymatic electrode based on gradient hollow fiber membrane and multi-wall carbon tubes meshes. Biosensors and Bioelectronics 2020;152:112001. [DOI: 10.1016/j.bios.2019.112001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
8 Zhang Q, Meyerhoff ME. Nitric Oxide Release for Enhanced Biocompatibility and Analytical Performance of Implantable Electrochemical Sensors. Electroanalysis 2021;33:1997-2015. [DOI: 10.1002/elan.202100174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Jiang T, Qi L, Hou C, Fang S, Qin W. Self-Sterilizing Polymeric Membrane Sensors Based on 6-Chloroindole Release for Prevention of Marine Biofouling. Anal Chem 2020;92:12132-6. [DOI: 10.1021/acs.analchem.0c03099] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Rong G, Corrie SR, Clark HA. In Vivo Biosensing: Progress and Perspectives. ACS Sens 2017;2:327-38. [PMID: 28723197 DOI: 10.1021/acssensors.6b00834] [Cited by in Crossref: 114] [Cited by in F6Publishing: 96] [Article Influence: 22.8] [Reference Citation Analysis]
11 Zhang E, Galle L, Lochmann S, Grothe J, Kaskel S. Nanoporous carbon architectures for iontronics: Ion-based computing, logic circuits and biointerfacing. Chemical Engineering Journal 2021;420:130431. [DOI: 10.1016/j.cej.2021.130431] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Romero-montero A, Tecante A, García-arrazola R, Montiel C, del Valle LJ, Puiggalí J, Gimeno M. Growth of epithelial cells on films of enzymatically synthesized poly(gallic acid) crosslinked to carboxymethylcellulose. RSC Adv 2017;7:17660-9. [DOI: 10.1039/c7ra00883j] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
13 Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020;49:4405-65. [DOI: 10.1039/c9cs00587k] [Cited by in Crossref: 59] [Cited by in F6Publishing: 8] [Article Influence: 29.5] [Reference Citation Analysis]
14 Lopes IC, Zebda A, Vadgama P. New directions in membrane designs for biosensors. Current Opinion in Electrochemistry 2018;12:107-12. [DOI: 10.1016/j.coelec.2018.07.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
15 Corrie SR, Plebanski M. The emerging role of nanomaterials in immunological sensing - a brief review. Mol Immunol 2018;98:28-35. [PMID: 29325980 DOI: 10.1016/j.molimm.2017.12.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
16 Bettucci O, Matrone GM, Santoro F. Conductive Polymer‐Based Bioelectronic Platforms toward Sustainable and Biointegrated Devices: A Journey from Skin to Brain across Human Body Interfaces. Adv Materials Technologies 2022;7:2100293. [DOI: 10.1002/admt.202100293] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
17 Qi L, Liang R, Jiang T, Qin W. Anti-fouling polymeric membrane ion-selective electrodes. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116572] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Liu J, Hu Q, Qi L, Lin J, Yu L. Liquid crystal-based sensing platform for detection of Pb2+ assisted by DNAzyme and rolling circle amplification. Journal of Hazardous Materials 2020;400:123218. [DOI: 10.1016/j.jhazmat.2020.123218] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
19 Scholten K, Meng E. A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. International Journal of Pharmaceutics 2018;544:319-34. [DOI: 10.1016/j.ijpharm.2018.02.022] [Cited by in Crossref: 40] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
20 Ferris MS, Elms MK, Cash KJ. Enzyme‐conjugated nanosensors with tunable detection limits for small biomolecule determination. AIChE J 2019;65. [DOI: 10.1002/aic.16698] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
21 Raditya AN, O’hare D. Review—Electrochemical Sensor Biofouling in Environmental Sensor Networks: Characterisation, Remediation and Lessons from Biomedical Devices. J Electrochem Soc 2020;167:127503. [DOI: 10.1149/1945-7111/aba931] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Hughes LB, Labban N, Conway GE, Pollock JA, Leopold MC. Adaptable Xerogel-Layered Amperometric Biosensor Platforms on Wire Electrodes for Clinically Relevant Measurements. Sensors (Basel) 2019;19:E2584. [PMID: 31174353 DOI: 10.3390/s19112584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Corsi M, Paghi A, Mariani S, Golinelli G, Debrassi A, Egri G, Leo G, Vandini E, Vilella A, Dähne L, Giuliani D, Barillaro G. Bioresorbable Nanostructured Chemical Sensor for Monitoring of pH Level In Vivo. Adv Sci (Weinh) 2022;:e2202062. [PMID: 35618637 DOI: 10.1002/advs.202202062] [Reference Citation Analysis]
24 Mao J, Xu M, Ji W, Zhang M. Absorbance enhancement of aptamers/GNP enables sensitive protein detection in rat brains. Chem Commun (Camb) 2018;54:1193-6. [PMID: 29335698 DOI: 10.1039/c7cc08636a] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
25 Garcias-morales C, Espinosa Maldonado J, Ariza Castolo A, Perez Berumen CM, Lobato MA, Rodriguez MA, Espinoza Roa A. Synthesis and physicochemical characterization of Schiff bases used as optical sensor for metals detection in water. Journal of Molecular Structure 2021;1228:129444. [DOI: 10.1016/j.molstruc.2020.129444] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
26 Brown MD, Schoenfisch MH. Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization. Chem Rev 2019;119:11551-75. [DOI: 10.1021/acs.chemrev.8b00797] [Cited by in Crossref: 33] [Cited by in F6Publishing: 17] [Article Influence: 11.0] [Reference Citation Analysis]
27 Qu ZB, Jiang Y, Zhang J, Chen S, Zeng R, Zhuo Y, Lu M, Shi G, Gu H. Tailoring Oxygen-Containing Groups on Graphene for Ratiometric Electrochemical Measurements of Ascorbic Acid in Living Subacute Parkinson's Disease Mouse Brains. Anal Chem 2021;93:16598-607. [PMID: 34844405 DOI: 10.1021/acs.analchem.1c03965] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Farhoudi N, Leu HY, Laurentius LB, Magda JJ, Solzbacher F, Reiche CF. Smart Hydrogel Micromechanical Resonators with Ultrasound Readout for Biomedical Sensing. ACS Sens 2020;5:1882-9. [PMID: 32545953 DOI: 10.1021/acssensors.9b02180] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
29 Liu X, Xiao T, Wu F, Shen M, Zhang M, Yu H, Mao L. Ultrathin Cell-Membrane-Mimic Phosphorylcholine Polymer Film Coating Enables Large Improvements for In Vivo Electrochemical Detection. Angew Chem 2017;129:11964-8. [DOI: 10.1002/ange.201705900] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
30 Jiang T, Qi L, Qin W. Improving the Environmental Compatibility of Marine Sensors by Surface Functionalization with Graphene Oxide. Anal Chem 2019;91:13268-74. [DOI: 10.1021/acs.analchem.9b03974] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
31 Lisi F, Zelikin AN, Chandrawati R. Nitric Oxide to Fight Viral Infections. Adv Sci (Weinh) 2021;8:2003895. [PMID: 33850691 DOI: 10.1002/advs.202003895] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 21.0] [Reference Citation Analysis]
32 Liu X, Xiao T, Wu F, Shen M, Zhang M, Yu H, Mao L. Ultrathin Cell-Membrane-Mimic Phosphorylcholine Polymer Film Coating Enables Large Improvements for In Vivo Electrochemical Detection. Angew Chem Int Ed 2017;56:11802-6. [DOI: 10.1002/anie.201705900] [Cited by in Crossref: 80] [Cited by in F6Publishing: 72] [Article Influence: 16.0] [Reference Citation Analysis]
33 Chen M, Li Y, Han R, Chen Q, Jiang L, Luo X. Click reaction-assisted construction of antifouling immunosensors for electrochemical detection of cancer biomarkers in human serum. Sensors and Actuators B: Chemical 2022;363:131810. [DOI: 10.1016/j.snb.2022.131810] [Reference Citation Analysis]
34 Fichera L, Li-Destri G, Tuccitto N. Fluorescent nanoparticle-based Internet of things. Nanoscale 2020;12:9817-23. [PMID: 32338670 DOI: 10.1039/d0nr01365j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
35 Lee MA, Nguyen FT, Scott K, Chan NYL, Bakh NA, Jones KK, Pham C, Garcia-Salinas P, Garcia-Parraga D, Fahlman A, Marco V, Koman VB, Oliver RJ, Hopkins LW, Rubio C, Wilson RP, Meekan MG, Duarte CM, Strano MS. Implanted Nanosensors in Marine Organisms for Physiological Biologging: Design, Feasibility, and Species Variability. ACS Sens 2019;4:32-43. [PMID: 30525471 DOI: 10.1021/acssensors.8b00538] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
36 Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020;120:3852-89. [DOI: 10.1021/acs.chemrev.9b00739] [Cited by in Crossref: 83] [Cited by in F6Publishing: 54] [Article Influence: 41.5] [Reference Citation Analysis]
37 Qi L, Jiang T, Liang R, Qin W. Enhancing the Oil-Fouling Resistance of Polymeric Membrane Ion-Selective Electrodes by Surface Modification of a Zwitterionic Polymer-Based Oleophobic Self-Cleaning Coating. Anal Chem 2021;93:6932-7. [PMID: 33914516 DOI: 10.1021/acs.analchem.1c01116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Feng T, Ji W, Tang Q, Wei H, Zhang S, Mao J, Zhang Y, Mao L, Zhang M. Low-Fouling Nanoporous Conductive Polymer-Coated Microelectrode for In Vivo Monitoring of Dopamine in the Rat Brain. Anal Chem 2019;91:10786-91. [DOI: 10.1021/acs.analchem.9b02386] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
39 Xu C, Wu F, Yu P, Mao L. In Vivo Electrochemical Sensors for Neurochemicals: Recent Update. ACS Sens 2019;4:3102-18. [PMID: 31718157 DOI: 10.1021/acssensors.9b01713] [Cited by in Crossref: 53] [Cited by in F6Publishing: 37] [Article Influence: 17.7] [Reference Citation Analysis]
40 Lendor S, Olkowicz M, Boyaci E, Yu M, Diwan M, Hamani C, Palmer M, Reyes-Garcés N, Gómez-Ríos GA, Pawliszyn J. Investigation of Early Death-Induced Changes in Rat Brain by Solid Phase Microextraction via Untargeted High Resolution Mass Spectrometry: In Vivo versus Postmortem Comparative Study. ACS Chem Neurosci 2020;11:1827-40. [PMID: 32407623 DOI: 10.1021/acschemneuro.0c00270] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
41 Chatard C, Meiller A, Marinesco S. Microelectrode Biosensors for in vivo Analysis of Brain Interstitial Fluid. Electroanalysis 2018;30:977-98. [DOI: 10.1002/elan.201700836] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 3.8] [Reference Citation Analysis]