BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Petruci JFDS, Wilk A, Cardoso AA, Mizaikoff B. Online Analysis of H 2 S and SO 2 via Advanced Mid-Infrared Gas Sensors. Anal Chem 2015;87:9605-11. [DOI: 10.1021/acs.analchem.5b02730] [Cited by in Crossref: 36] [Cited by in F6Publishing: 21] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Jeraal MI, Roberts KJ, Mcrobbie I, Harbottle D. Assessment of the Thermal Degradation of Sodium Lauroyl Isethionate Using Predictive Isoconversional Kinetics and a Temperature-Resolved Analysis of Evolved Gases. Ind Eng Chem Res 2019;58:8112-22. [DOI: 10.1021/acs.iecr.9b00797] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
2 You X, Wu J, Chi Y. Superhydrophobic Silica Aerogels Encapsulated Fluorescent Perovskite Quantum Dots for Reversible Sensing of SO 2 in a 3D-Printed Gas Cell. Anal Chem 2019;91:5058-66. [DOI: 10.1021/acs.analchem.8b05253] [Cited by in Crossref: 20] [Cited by in F6Publishing: 7] [Article Influence: 6.7] [Reference Citation Analysis]
3 Li L, Deng D, Huang S, Song H, Xu K, Zhang L, Lv Y. UV-Assisted Cataluminescent Sensor for Carbon Monoxide Based on Oxygen-Functionalized g-C3N4 Nanomaterials. Anal Chem 2018;90:9598-605. [PMID: 29983047 DOI: 10.1021/acs.analchem.8b02532] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
4 Kokoric V, Theisen J, Wilk A, Penisson C, Bernard G, Mizaikoff B, Gabriel JP. Determining the Partial Pressure of Volatile Components via Substrate-Integrated Hollow Waveguide Infrared Spectroscopy with Integrated Microfluidics. Anal Chem 2018;90:4445-51. [DOI: 10.1021/acs.analchem.7b04425] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
5 Teuber A, Stach R, Haas J, Mizaikoff B. Innovative Substrate-Integrated Hollow Waveguide Coupled Attenuated Total Reflection Sensors for Quantum Cascade Laser Based Infrared Spectroscopy in Harsh Environments. Appl Spectrosc 2021;:37028211064331. [PMID: 34890273 DOI: 10.1177/00037028211064331] [Reference Citation Analysis]
6 Hagemann LT, McCartney MM, Fung AG, Peirano DJ, Davis CE, Mizaikoff B. Portable combination of Fourier transform infrared spectroscopy and differential mobility spectrometry for advanced vapor phase analysis. Analyst 2018;143:5683-91. [PMID: 30232480 DOI: 10.1039/c8an01192c] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
7 Stach R, Haas J, Tütüncü E, Daboss S, Kranz C, Mizaikoff B. polyHWG: 3D Printed Substrate-Integrated Hollow Waveguides for Mid-Infrared Gas Sensing. ACS Sens 2017;2:1700-5. [PMID: 29090579 DOI: 10.1021/acssensors.7b00649] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
8 Zhang Y, Wang Y, Liu Y, Dong X, Xia H, Zhang Z, Li J. Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019;210:120-5. [DOI: 10.1016/j.saa.2018.11.035] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Barreto DN, Kokoric V, da Silveira Petruci JF, Mizaikoff B. From Light Pipes to Substrate-Integrated Hollow Waveguides for Gas Sensing: A Review. ACS Meas Au 2021;1:97-109. [DOI: 10.1021/acsmeasuresciau.1c00029] [Reference Citation Analysis]
10 Yang A, Chu J, Li W, Wang D, Yang X, Lan T, Wang X, Rong M, Koratkar N. Short period sinusoidal thermal modulation for quantitative identification of gas species. Nanoscale 2020;12:220-9. [PMID: 31815990 DOI: 10.1039/c9nr05863j] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
11 Purbia R, Kwon YM, Choi SY, Kim SH, Lee YS, Ahi ZB, Park H, Baik JM. A thermodynamic approach toward selective and reversible sub-ppm H 2 S sensing using ultra-small CuO nanorods impregnated with Nb 2 O 5 nanoparticles. J Mater Chem A 2021;9:17425-33. [DOI: 10.1039/d1ta03852d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
12 Baggio AR, Machado DFS, Carvalho-silva VH, Paterno LG, de Oliveira HCB. Rovibrational spectroscopic constants of the interaction between ammonia and metallo-phthalocyanines: a theoretical protocol for ammonia sensor design. Phys Chem Chem Phys 2017;19:10843-53. [DOI: 10.1039/c6cp07900h] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
13 Seichter F, Tütüncü E, Hagemann LT, Vogt J, Wachter U, Gröger M, Kress S, Radermacher P, Mizaikoff B. Online monitoring of carbon dioxide and oxygen in exhaled mouse breath via substrate-integrated hollow waveguide Fourier-transform infrared-luminescence spectroscopy. J Breath Res 2018;12:036018. [DOI: 10.1088/1752-7163/aabf98] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
14 Li D, Duan H, Ma Y, Deng W. Headspace-Sampling Paper-Based Analytical Device for Colorimetric/Surface-Enhanced Raman Scattering Dual Sensing of Sulfur Dioxide in Wine. Anal Chem 2018;90:5719-27. [PMID: 29648444 DOI: 10.1021/acs.analchem.8b00016] [Cited by in Crossref: 50] [Cited by in F6Publishing: 33] [Article Influence: 12.5] [Reference Citation Analysis]
15 Hagemann LT, Ehrle S, Mizaikoff B. Optimizing the Analytical Performance of Substrate-Integrated Hollow Waveguides: Experiment and Simulation. Appl Spectrosc 2019;73:1451-60. [PMID: 31397586 DOI: 10.1177/0003702819867342] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
16 Tian X, Cao Y, Chen J, Liu K, Wang G, Gao X. Hydrogen sulphide detection using near-infrared diode laser and compact dense-pattern multipass cell*. Chinese Phys B 2019;28:063301. [DOI: 10.1088/1674-1056/28/6/063301] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
17 Tütüncü E, Kokoric V, Szedlak R, Macfarland D, Zederbauer T, Detz H, Andrews AM, Schrenk W, Strasser G, Mizaikoff B. Advanced gas sensors based on substrate-integrated hollow waveguides and dual-color ring quantum cascade lasers. Analyst 2016;141:6202-7. [DOI: 10.1039/c6an01130f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
18 Kokoric V, Widmann D, Wittmann M, Behm RJ, Mizaikoff B. Infrared spectroscopy via substrate-integrated hollow waveguides: a powerful tool in catalysis research. Analyst 2016;141:5990-5. [DOI: 10.1039/c6an01534d] [Cited by in Crossref: 11] [Article Influence: 1.8] [Reference Citation Analysis]
19 Tütüncü E, Nägele M, Fuchs P, Fischer M, Mizaikoff B. iHWG-ICL: Methane Sensing with Substrate-Integrated Hollow Waveguides Directly Coupled to Interband Cascade Lasers. ACS Sens 2016;1:847-51. [DOI: 10.1021/acssensors.6b00238] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
20 Kaiser A, Torres Ceja E, Liu Y, Huber F, Müller R, Herr U, Thonke K. H2S sensing for breath analysis with Au functionalized ZnO nanowires. Nanotechnology 2021;32:205505. [PMID: 33498025 DOI: 10.1088/1361-6528/abe004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
21 Zhang Z, Zhang S, Jiang C, Guo H, Qu F, Shimakawa Y, Yang M. Integrated sensing array of the perovskite-type LnFeO3 (Ln˭La, Pr, Nd, Sm) to discriminate detection of volatile sulfur compounds. J Hazard Mater 2021;413:125380. [PMID: 33609880 DOI: 10.1016/j.jhazmat.2021.125380] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Petruci JFDS, Cardoso AA, Wilk A, Kokoric V, Mizaikoff B. iCONVERT: An Integrated Device for the UV-Assisted Determination of H 2 S via Mid-Infrared Gas Sensors. Anal Chem 2015;87:9580-3. [DOI: 10.1021/acs.analchem.5b02731] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
23 Kireev SV, Kondrashov AA, Rybakov MA, Shnyrev SL, Sultangulova AI. Real-time methods of hydrogen sulfide detection. Laser Phys Lett 2022;19:075604. [DOI: 10.1088/1612-202x/ac72aa] [Reference Citation Analysis]
24 Yu H, Hu J, Jiang X, Hou X, Tian Y. Point discharge microplasma reactor for high efficiency conversion of H2S to SO2 for speciation analysis of sulfide and sulfite using molecular fluorescence spectrometry. Anal Chim Acta 2018;1042:79-85. [PMID: 30428991 DOI: 10.1016/j.aca.2018.07.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
25 Urriza-arsuaga I, Bedoya M, Orellana G. Unprecedented Reversible Real-Time Luminescent Sensing of H 2 S in the Gas Phase. Anal Chem 2019;91:2231-8. [DOI: 10.1021/acs.analchem.8b04811] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
26 Li J, Xie W, Shao R, Ju X, Li H. In situ Ba2+ exchange in amorphous TiO2 hollow sphere for derived photoelectrochemical sensing of sulfur dioxide. Sensors and Actuators B: Chemical 2018;262:282-8. [DOI: 10.1016/j.snb.2018.01.199] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
27 Jha RK, Nanda A, Bhat N. Sub‐ppm sulfur dioxide detection using MoS 2 modified multi‐wall carbon nanotubes at room temperature. Nano Select 2022;3:98-107. [DOI: 10.1002/nano.202100145] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Zhang X, Zhou H, Chen C, Li X, Cui Z, Xiao S, Tang J. Ultraviolet differential optical absorption spectrometry: quantitative analysis of the CS 2 produced by SF 6 decomposition. Meas Sci Technol 2017;28:115102. [DOI: 10.1088/1361-6501/aa821a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
29 Septiani NLW, Kaneti YV, Yuliarto B, Nugraha, Dipojono HK, Takei T, You J, Yamauchi Y. Hybrid nanoarchitecturing of hierarchical zinc oxide wool-ball-like nanostructures with multi-walled carbon nanotubes for achieving sensitive and selective detection of sulfur dioxide. Sensors and Actuators B: Chemical 2018;261:241-51. [DOI: 10.1016/j.snb.2018.01.088] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 8.3] [Reference Citation Analysis]
30 Tuerdi G, Kari N, Yan Y, Nizamidin P, Yimit A. A Functionalized Tetrakis(4-Nitrophenyl)Porphyrin Film Optical Waveguide Sensor for Detection of H₂S and Ethanediamine Gases. Sensors (Basel) 2017;17:E2717. [PMID: 29186776 DOI: 10.3390/s17122717] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 2.4] [Reference Citation Analysis]
31 Sun W, Xu H, Bao S, Yang W, Shen W, Hu G. A novel fluorescent probe based on triphenylamine for detecting sulfur dioxide derivatives. New J Chem 2022;46:5526-33. [DOI: 10.1039/d1nj06099f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Yin X, Wu H, Dong L, Li B, Ma W, Zhang L, Yin W, Xiao L, Jia S, Tittel FK. ppb-Level SO2 Photoacoustic Sensors with a Suppressed Absorption-Desorption Effect by Using a 7.41 μm External-Cavity Quantum Cascade Laser. ACS Sens 2020;5:549-56. [PMID: 31939293 DOI: 10.1021/acssensors.9b02448] [Cited by in Crossref: 41] [Cited by in F6Publishing: 29] [Article Influence: 20.5] [Reference Citation Analysis]
33 Seichter F, Vogt J, Radermacher P, Mizaikoff B. Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo – Markov Chain sampling. Analytica Chimica Acta 2017;951:32-45. [DOI: 10.1016/j.aca.2016.11.025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]