BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Katseli V, Economou A, Kokkinos C. Smartphone-Addressable 3D-Printed Electrochemical Ring for Nonenzymatic Self-Monitoring of Glucose in Human Sweat. Anal Chem 2021;93:3331-6. [PMID: 33560824 DOI: 10.1021/acs.analchem.0c05057] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 de Faria LV, Rocha RG, Arantes LC, Ramos DL, Lima CD, Richter EM, P dos Santos WT, Muñoz RA. Cyclic square-wave voltammetric discrimination of the amphetamine-type stimulants MDA and MDMA in real-world forensic samples by 3D-printed carbon electrodes. Electrochimica Acta 2022;429:141002. [DOI: 10.1016/j.electacta.2022.141002] [Reference Citation Analysis]
2 Du Y, Zhang X, Liu P, Yu D, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022;10:944428. [DOI: 10.3389/fchem.2022.944428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Duarte LC, Baldo TA, Silva-neto HA, Figueredo F, Janegitz BC, Coltro WK. 3D printing of compact electrochemical cell for sequential analysis of steroid hormones. Sensors and Actuators B: Chemical 2022;364:131850. [DOI: 10.1016/j.snb.2022.131850] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Zhai X, Cao Y, Sun W, Cao S, Wang Y, He L, Yao N, Zhao D. Core-shell composite N-doped-Co-MOF@polydopamine decorated with Ag nanoparticles for nonenzymatic glucose sensors. Journal of Electroanalytical Chemistry 2022;918:116491. [DOI: 10.1016/j.jelechem.2022.116491] [Reference Citation Analysis]
5 Xu J, Yan Z, Liu Q. Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. Sensors 2022;22:5670. [DOI: 10.3390/s22155670] [Reference Citation Analysis]
6 Vasiliou F, Plessas AK, Economou A, Thomaidis N, Papaefstathiou GS, Kokkinos C. Graphite paste sensor modified with a Cu(II)-complex for the enzyme-free simultaneous voltammetric determination of glucose and uric acid in sweat. Journal of Electroanalytical Chemistry 2022;917:116393. [DOI: 10.1016/j.jelechem.2022.116393] [Reference Citation Analysis]
7 Li M, Xu J, Zheng Q, Guo C, Chen Y. Chemical-Based Surface Plasmon Resonance Imaging of Fingerprints. Anal Chem 2022. [PMID: 35549090 DOI: 10.1021/acs.analchem.2c00389] [Reference Citation Analysis]
8 Alhaddad AY, Aly H, Gad H, Al-ali A, Sadasivuni KK, Cabibihan J, Malik RA. Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection. Front Bioeng Biotechnol 2022;10:876672. [DOI: 10.3389/fbioe.2022.876672] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Glasco DL, Sheelam A, Ho NHB, Mamaril AM, King M, Bell JG. Editors’ Choice—Review—3D Printing: An Innovative Trend in Analytical Sensing. ECS Sens Plus 2022;1:010602. [DOI: 10.1149/2754-2726/ac5c7a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
10 Xiao J, Luo Y, Su L, Lu J, Han W, Xu T, Zhang X. Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339843] [Reference Citation Analysis]
11 Zhu J, Wu P, Chao Y, Yu J, Zhu W, Liu Z, Xu C. Recent advances in 3D printing for catalytic applications. Chemical Engineering Journal 2022;433:134341. [DOI: 10.1016/j.cej.2021.134341] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
12 Sanati A, Esmaeili Y, Bidram E, Shariati L, Rafienia M, Mahshid S, Parlak O. Recent advancement in electrode materials and fabrication, microfluidic designs, and self-powered systems for wearable non-invasive electrochemical glucose monitoring. Applied Materials Today 2022;26:101350. [DOI: 10.1016/j.apmt.2021.101350] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Liu Y, Zhong L, Zhang S, Wang J, Liu Z. An ultrasensitive and wearable photoelectrochemical sensor for unbiased and accurate monitoring of sweat glucose. Sensors and Actuators B: Chemical 2022;354:131204. [DOI: 10.1016/j.snb.2021.131204] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
14 Poulladofonou G, Freris C, Economou A, Kokkinos C. Wearable Electronic Finger for Date Rape Drugs Screening: From "Do-It-Yourself" Fabrication to Self-Testing. Anal Chem 2022. [PMID: 35195989 DOI: 10.1021/acs.analchem.2c00015] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Manasa G, Mascarenhas RJ, Shetti NP, Malode SJ, Mishra A, Basu S, Aminabhavi TM. Skin Patchable Sensor Surveillance for Continuous Glucose Monitoring. ACS Appl Bio Mater 2022. [PMID: 35170319 DOI: 10.1021/acsabm.1c01289] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Remaggi G, Zaccarelli A, Elviri L. 3D Printing Technologies in Biosensors Production: Recent Developments. Chemosensors 2022;10:65. [DOI: 10.3390/chemosensors10020065] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Umapathi R, Ghoreishian SM, Sonwal S, Rani GM, Huh YS. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coordination Chemistry Reviews 2022;453:214305. [DOI: 10.1016/j.ccr.2021.214305] [Cited by in Crossref: 34] [Cited by in F6Publishing: 7] [Article Influence: 34.0] [Reference Citation Analysis]
18 Lin T, Xu Y, Zhao A, He W, Xiao F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339461] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ni M, Tan M, Pan Y, Zhu C, Du H. Rapid preparation of self-supported nickel–iron oxide as a high-performance glucose sensing platform. J Mater Chem C. [DOI: 10.1039/d2tc03176k] [Reference Citation Analysis]
20 Song L, Chen J, Xu BB, Huang Y. Flexible Plasmonic Biosensors for Healthcare Monitoring: Progress and Prospects. ACS Nano 2021;15:18822-47. [PMID: 34841852 DOI: 10.1021/acsnano.1c07176] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
21 Koukouviti E, Kokkinos C. 3D printed enzymatic microchip for multiplexed electrochemical biosensing. Anal Chim Acta 2021;1186:339114. [PMID: 34756268 DOI: 10.1016/j.aca.2021.339114] [Reference Citation Analysis]
22 Cheng S, Gu Z, Zhou L, Hao M, An H, Song K, Wu X, Zhang K, Zhao Z, Dong Y, Wen Y. Recent Progress in Intelligent Wearable Sensors for Health Monitoring and Wound Healing Based on Biofluids. Front Bioeng Biotechnol 2021;9:765987. [PMID: 34790653 DOI: 10.3389/fbioe.2021.765987] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
23 Ataide VN, Rocha DP, de Siervo A, Paixão TRLC, Muñoz RAA, Angnes L. Additively manufactured carbon/black-integrated polylactic acid 3Dprintedsensor for simultaneous quantification of uric acid and zinc in sweat. Mikrochim Acta 2021;188:388. [PMID: 34668076 DOI: 10.1007/s00604-021-05007-5] [Reference Citation Analysis]
24 Veeman D, Shree MV, Sureshkumar P, Jagadeesha T, Natrayan L, Ravichandran M, Paramasivam P, R L. Sustainable Development of Carbon Nanocomposites: Synthesis and Classification for Environmental Remediation. Journal of Nanomaterials 2021;2021:1-21. [DOI: 10.1155/2021/5840645] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
25 Rocha DP, Rocha RG, Castro SVF, Trindade MAG, Munoz RAA, Richter EM, Angnes L. Posttreatment of 3D‐printed surfaces for electrochemical applications: A critical review on proposed protocols. Electrochemical Science Advances. [DOI: 10.1002/elsa.202100136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 Ragazou K, Lougkovois R, Katseli V, Kokkinos C. Fully Integrated 3D-Printed Electronic Device for the On-Field Determination of Antipsychotic Drug Quetiapine. Sensors (Basel) 2021;21:4753. [PMID: 34300495 DOI: 10.3390/s21144753] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Silva AL, Salvador GMDS, Castro SVF, Carvalho NMF, Munoz RAA. A 3D Printer Guide for the Development and Application of Electrochemical Cells and Devices. Front Chem 2021;9:684256. [PMID: 34277568 DOI: 10.3389/fchem.2021.684256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
28 Koralli P, Mouzakis DE. Advances in Wearable Chemosensors. Chemosensors 2021;9:99. [DOI: 10.3390/chemosensors9050099] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
29 Katseli V, Angelopoulou M, Kokkinos C. 3D Printed Bioelectronic Microwells. Adv Funct Materials 2021;31:2102459. [DOI: 10.1002/adfm.202102459] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
30 Yang C, Gao N, Liu Y, Zhao H, Jing J, Zhang X. A silicon nanoparticle-based nanoprobe for ratiometric fluorescence and visual detection of glucose. New J Chem 2021;45:19515-20. [DOI: 10.1039/d1nj03826e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]