1 |
Bamburowicz-Klimkowska M, Malecki M, Bystrzejewski M, Kasprzak A, Grudzinski IP. Graphene-encapsulated iron nanoparticles as a non-viral vector for gene delivery into melanoma cells. Biochem Biophys Res Commun 2023;652:84-7. [PMID: 36841098 DOI: 10.1016/j.bbrc.2023.02.042] [Reference Citation Analysis]
|
2 |
Liu Y, Zhang D, An Y, Sun Y, Li J, Zheng M, Zou Y, Shi B. Non-invasive PTEN mRNA brain delivery effectively mitigates growth of orthotopic glioblastoma. Nano Today 2023;49:101790. [DOI: 10.1016/j.nantod.2023.101790] [Reference Citation Analysis]
|
3 |
Shinde A, Shinde P, Kar S, Illath K, Dey S, Mahapatra NR, Nagai M, Santra TS. Metallic micro-ring device for highly efficient large cargo delivery in mammalian cells using infrared light pulses. Lab Chip 2023. [PMID: 36928187 DOI: 10.1039/d2lc00899h] [Reference Citation Analysis]
|
4 |
Petrikaite V, D'Avanzo N, Celia C, Fresta M. Nanocarriers overcoming biological barriers induced by multidrug resistance of chemotherapeutics in 2D and 3D cancer models. Drug Resist Updat 2023;68:100956. [PMID: 36958083 DOI: 10.1016/j.drup.2023.100956] [Reference Citation Analysis]
|
5 |
Ueda J, Yamazaki T, Funakoshi H. Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. Int J Mol Sci 2023;24. [PMID: 36902207 DOI: 10.3390/ijms24054778] [Reference Citation Analysis]
|
6 |
Yang J, Luly KM, Green JJ. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1853. [PMID: 36193561 DOI: 10.1002/wnan.1853] [Reference Citation Analysis]
|
7 |
Hickey JC, Hurst PJ, Patterson JP, Guan Z. Facile Synthesis of Multifunctional Bioreducible Polymers for mRNA Delivery. Chemistry 2023;29:e202203393. [PMID: 36469740 DOI: 10.1002/chem.202203393] [Reference Citation Analysis]
|
8 |
Shen WJ, Tian DM, Fu L, Jin B, Liu Y, Xu YS, Ye YB, Wang XB, Xu XJ, Tang C, Li FP, Wang CF, Wu G, Yan LP. Elastin-Derived VGVAPG Fragment Decorated Cell-Penetrating Peptide with Improved Gene Delivery Efficacy. Pharmaceutics 2023;15. [PMID: 36839992 DOI: 10.3390/pharmaceutics15020670] [Reference Citation Analysis]
|
9 |
Thuy LT, Mallick S, Kim S, Choi JS. Synthesis and characterization of oligo aminoglycosides and polyethylenimine conjugates as polymeric gene carriers. Korean J Chem Eng 2023;40:325-336. [DOI: 10.1007/s11814-022-1296-8] [Reference Citation Analysis]
|
10 |
Hausig-Punke F, Dekevic G, Sobotta FH, Solomun JI, Richter F, Salzig D, Traeger A, Brendel JC. Efficient Transfection via an Unexpected Mechanism by Near Neutral Polypiperazines with Tailored Response to Endosomal pH. Macromol Biosci 2023;:e2200517. [PMID: 36655803 DOI: 10.1002/mabi.202200517] [Reference Citation Analysis]
|
11 |
Algar WR, Szwarczewski A, Massey M. Are We There Yet? Intracellular Sensing with Luminescent Nanoparticles and FRET. Anal Chem 2023;95:551-9. [PMID: 36595310 DOI: 10.1021/acs.analchem.2c03751] [Reference Citation Analysis]
|
12 |
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. Small 2023;:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Reference Citation Analysis]
|
13 |
Tomabechi R, Miyasato M, Sato T, Takada T, Higuchi K, Kishimoto H, Shirasaka Y, Inoue K. Identification of 5-Carboxyfluorescein as a Probe Substrate of SLC46A3 and Its Application in a Fluorescence-Based In Vitro Assay Evaluating the Interaction with SLC46A3. Mol Pharm 2023;20:491-9. [PMID: 36458938 DOI: 10.1021/acs.molpharmaceut.2c00741] [Reference Citation Analysis]
|
14 |
Aliyandi A, Reker-Smit C, Zuhorn IS, Salvati A. Cell surface biotinylation to identify the receptors involved in nanoparticle uptake into endothelial cells. Acta Biomater 2023;155:507-20. [PMID: 36371002 DOI: 10.1016/j.actbio.2022.11.010] [Reference Citation Analysis]
|
15 |
Winkeljann B, Keul DC, Merkel OM. Engineering poly- and micelleplexes for nucleic acid delivery - A reflection on their endosomal escape. J Control Release 2023;353:518-34. [PMID: 36496051 DOI: 10.1016/j.jconrel.2022.12.008] [Reference Citation Analysis]
|
16 |
Wang H, You W, Gao F, Zhang L, Shen A, Wang F, Chen G, Nie X, Xia L, Huang W, Zhang W, Wang L, Hong C, Zhang Z, You Y. Direct cytosolic delivery of DNA by creating fast closable holes in the cell membrane. Chemical Engineering Journal 2023;455:140962. [DOI: 10.1016/j.cej.2022.140962] [Reference Citation Analysis]
|
17 |
Yao Y, Ko Y, Grasman G, Raymond JE, Lahann J. The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy. Beilstein J Nanotechnol 2023;14:351-61. [PMID: 36959977 DOI: 10.3762/bjnano.14.30] [Reference Citation Analysis]
|
18 |
Aliakbarinodehi N, Gallud A, Mapar M, Wesén E, Heydari S, Jing Y, Emilsson G, Liu K, Sabirsh A, Zhdanov VP, Lindfors L, Esbjörner EK, Höök F. Interaction Kinetics of Individual mRNA-Containing Lipid Nanoparticles with an Endosomal Membrane Mimic: Dependence on pH, Protein Corona Formation, and Lipoprotein Depletion. ACS Nano 2022;16:20163-73. [PMID: 36511601 DOI: 10.1021/acsnano.2c04829] [Reference Citation Analysis]
|
19 |
Luo HC, Mai KJ, Liu E, Chen H, Xie YJ, Zheng YX, Lin R, Zhang LM, Zhang Y. Efficiency and Safety of Dextran-PAMAM/siMMP-9 Complexes for Decreasing Matrix Metalloproteinase-9 Expression and Promoting Wound Healing in Diabetic Rats. Bioconjug Chem 2022;33:2398-410. [PMID: 36374571 DOI: 10.1021/acs.bioconjchem.2c00487] [Reference Citation Analysis]
|
20 |
Silva I, Domingues C, Jarak I, Carvalho RA, Cordeiro RA, Dourado M, Veiga F, Faneca H, Figueiras A. Novel Non-Viral Vectors Based on Pluronic(®) F68PEI with Application in Oncology Field. Polymers (Basel) 2022;14. [PMID: 36501709 DOI: 10.3390/polym14235315] [Reference Citation Analysis]
|
21 |
Korovkina O, Polyakov D, Korzhikov-Vlakh V, Korzhikova-Vlakh E. Stimuli-Responsive Polypeptide Nanoparticles for Enhanced DNA Delivery. Molecules 2022;27. [PMID: 36500587 DOI: 10.3390/molecules27238495] [Reference Citation Analysis]
|
22 |
Wang H, Qin L, Zhang X, Guan J, Mao S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Control Release 2022;352:970-93. [PMID: 36372386 DOI: 10.1016/j.jconrel.2022.10.061] [Reference Citation Analysis]
|
23 |
Saad MA, Hasan T. Spotlight on Photoactivatable Liposomes beyond Drug Delivery: An Enabler of Multitargeting of Molecular Pathways. Bioconjug Chem 2022;33:2041-64. [PMID: 36197738 DOI: 10.1021/acs.bioconjchem.2c00376] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
24 |
Whitaker RD, Decano JL, Gormley C, Beigie CA, Meisel C, Tan GA, Moran AM, Giordano NJ, Park Y, Huang P, Andersson S, Gantz D, Grant AK, Ruiz-Opazo N, Herrera VLM, Wong JY. Janus USPION modular platform (JUMP) for theranostic ultrasound-mediated targeted intratumoral microvascular imaging and DNA/miRNA delivery. Theranostics 2022;12:7646-67. [PMID: 36451861 DOI: 10.7150/thno.78454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Khare P, Conway JF, S Manickam D. Lipidoid nanoparticles increase ATP uptake into hypoxic brain endothelial cells. European Journal of Pharmaceutics and Biopharmaceutics 2022;180:238-250. [DOI: 10.1016/j.ejpb.2022.10.011] [Reference Citation Analysis]
|
26 |
Yang YL, Cao LB, He WR, Zhong L, Guo Y, Yang Q, Shu HB, Hu MM. Endocytosis triggers V-ATPase-SYK-mediated priming of cGAS activation and innate immune response. Proc Natl Acad Sci U S A 2022;119:e2207280119. [PMID: 36252040 DOI: 10.1073/pnas.2207280119] [Reference Citation Analysis]
|
27 |
Wang S, Zhang Z, Tang R, He F, Huang Y, Nie Z, Lei C. Responsive MXene nanovehicles deliver CRISPR/Cas12a for boolean logic-controlled gene editing. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1376-1] [Reference Citation Analysis]
|
28 |
Wan Y, Yang Y, Wu M, Feng S. Fluorinated vectors for gene delivery. Expert Opin Drug Deliv 2022. [PMID: 36184732 DOI: 10.1080/17425247.2022.2131769] [Reference Citation Analysis]
|
29 |
Choudhury H, Pandey M, Mohgan R, Jong JSJ, David RN, Ngan WY, Chin TL, Ting S, Kesharwani P, Gorain B. Dendrimer-based delivery of macromolecules for the treatment of brain tumor. Biomaterials Advances 2022;141:213118. [DOI: 10.1016/j.bioadv.2022.213118] [Reference Citation Analysis]
|
30 |
Faizullin B, Dayanova I, Strelnik I, Kholin K, Nizameev I, Gubaidullin A, Voloshina A, Gerasimova T, Kashnik I, Brylev K, Sibgatullina G, Samigullin D, Petrov K, Musina E, Karasik A, Mustafina A. pH-Driven Intracellular Nano-to-Molecular Disassembly of Heterometallic [Au2L2]{Re6Q8} Colloids (L = PNNP Ligand; Q = S2- or Se2-). Nanomaterials (Basel) 2022;12:3229. [PMID: 36145017 DOI: 10.3390/nano12183229] [Reference Citation Analysis]
|
31 |
Bahutair WN, Abuwatfa WH, Husseini GA. Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. Nanomaterials (Basel) 2022;12:3051. [PMID: 36080088 DOI: 10.3390/nano12173051] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
32 |
Sharma M, Chauhan P, Sharma R, Kumar D. Application of Nanotechnology in Clinical Research. Nanomaterials in Clinical Therapeutics 2022. [DOI: 10.1002/9781119857747.ch3] [Reference Citation Analysis]
|
33 |
Chen F, Liu Q, Xiong Y, Xu L. Nucleic acid strategies for infectious disease treatments: The nanoparticle-based oral delivery route. Front Pharmacol 2022;13:984981. [DOI: 10.3389/fphar.2022.984981] [Reference Citation Analysis]
|
34 |
Kont A, Mendonça MCP, Cronin MF, Cahill MR, O'Driscoll CM. Co-Formulation of Amphiphilic Cationic and Anionic Cyclodextrins Forming Nanoparticles for siRNA Delivery in the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022;23. [PMID: 36077202 DOI: 10.3390/ijms23179791] [Reference Citation Analysis]
|
35 |
Chen P, Yang W, Hong T, Miyazaki T, Dirisala A, Kataoka K, Cabral H. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC. Biomaterials 2022;:121748. [PMID: 36038419 DOI: 10.1016/j.biomaterials.2022.121748] [Reference Citation Analysis]
|
36 |
Rehman U, Parveen N, Sheikh A, Abourehab MAS, Sahebkar A, Kesharwani P. Polymeric nanoparticles-siRNA as an emerging nano-polyplexes against ovarian cancer. Colloids Surf B Biointerfaces 2022;218:112766. [PMID: 35994990 DOI: 10.1016/j.colsurfb.2022.112766] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
37 |
Duan X, Zhang Y, Guo M, Fan N, Chen K, Qin S, Xiao W, Zheng Q, Huang H, Wei X, Wei Y, Song X. Sodium alginate coating simultaneously increases the biosafety and immunotherapeutic activity of the cationic mRNA nanovaccine. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.08.015] [Reference Citation Analysis]
|
38 |
Ganda S, Wong CK, Biazik J, Raveendran R, Zhang L, Chen F, Ariotti N, Stenzel MH. Macrophage-Targeting and Complete Lysosomal Degradation of Self-assembled Two-Dimensional Poly(ε-caprolactone) Platelet Particles. ACS Appl Mater Interfaces 2022. [PMID: 35895018 DOI: 10.1021/acsami.2c06555] [Reference Citation Analysis]
|
39 |
Su L, Sun Z, Qi F, Su H, Qian L, Li J, Zuo L, Huang J, Yu Z, Li J, Chen Z, Zhang S. GRP75-driven, cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles underlies distinct gene therapy effect in ovarian cancer. J Nanobiotechnology 2022;20:340. [PMID: 35858873 DOI: 10.1186/s12951-022-01530-6] [Reference Citation Analysis]
|
40 |
Maiorano G, Guido C, Russo A, Giglio A, Rizzello L, Testini M, Cortese B, D’amone S, Gigli G, Palamà IE. Hybrid Polyelectrolyte Nanocomplexes for Non-Viral Gene Delivery with Favorable Efficacy and Safety Profile. Pharmaceutics 2022;14:1310. [DOI: 10.3390/pharmaceutics14071310] [Reference Citation Analysis]
|
41 |
Pei D, Dalbey RE. Membrane Translocation of Folded Proteins. J Biol Chem 2022;:102107. [PMID: 35671825 DOI: 10.1016/j.jbc.2022.102107] [Reference Citation Analysis]
|
42 |
Li X, Xu X, Huang K, Wu Y, Lin Z, Yin L. Hypoxia-Reinforced Antitumor RNA Interference Mediated by Micelleplexes with Programmed Disintegration. Acta Biomater 2022:S1742-7061(22)00326-9. [PMID: 35662669 DOI: 10.1016/j.actbio.2022.05.050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
43 |
Karthika C, Sureshkumar R, Zehravi M, Akter R, Ali F, Ramproshad S, Mondal B, Kundu MK, Dey A, Rahman MH, Antonescu A, Cavalu S. Multidrug Resistance in Cancer Cells: Focus on a Possible Strategy Plan to Address Colon Carcinoma Cells. Life 2022;12:811. [DOI: 10.3390/life12060811] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
44 |
Butt AM, Abdullah N, Rani NNIM, Ahmad N, Amin MCIM. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles. Pharm Res 2022. [PMID: 35619043 DOI: 10.1007/s11095-022-03296-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
45 |
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022;14. [PMID: 35745705 DOI: 10.3390/pharmaceutics14061132] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
46 |
Sukocheva OA, Liu J, Neganova ME, Beeraka NM, Aleksandrova YR, Manogaran P, Grigorevskikh EM, Chubarev VN, Fan R. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin Cancer Biol 2022:S1044-579X(22)00123-7. [PMID: 35623562 DOI: 10.1016/j.semcancer.2022.05.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
47 |
Zheng L, Bandara SR, Leal C. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm.. [DOI: 10.1101/2022.05.20.492895] [Reference Citation Analysis]
|
48 |
Ge L, Yang L, Bron R, van Rijn P. Topography-Mediated Enhancement of Nonviral Gene Delivery in Stem Cells. Pharmaceutics 2022;14:1096. [DOI: 10.3390/pharmaceutics14051096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
49 |
Sasso JM, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022. [PMID: 35533054 DOI: 10.1021/acs.jmedchem.2c00024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
50 |
Baldassi D, Ambike S, Feuerherd M, Cheng CC, Peeler DJ, Feldmann DP, Porras-Gonzalez DL, Wei X, Keller LA, Kneidinger N, Stoleriu MG, Popp A, Burgstaller G, Pun SH, Michler T, Merkel OM. Inhibition of SARS-CoV-2 replication in the lung with siRNA/VIPER polyplexes. J Control Release 2022;345:661-74. [PMID: 35364120 DOI: 10.1016/j.jconrel.2022.03.051] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
51 |
Sun M, Yue T, Wang C, Fan Z, Gazit E, Du J. Ultrasound-Responsive Peptide Nanogels to Balance Conflicting Requirements for Deep Tumor Penetration and Prolonged Blood Circulation. ACS Nano 2022. [PMID: 35475348 DOI: 10.1021/acsnano.2c01407] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
52 |
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 18.0] [Reference Citation Analysis]
|
53 |
Zhdanov VP. Lipid nanoparticles with ionizable lipids: Statistical aspects. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.044405] [Reference Citation Analysis]
|
54 |
Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater Sci 2022. [PMID: 35419582 DOI: 10.1039/d2bm00181k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
55 |
Khare P, Conway JF, Manickam DS. Lipidoid nanoparticles increase ATP uptake into hypoxic brain endothelial cells.. [DOI: 10.1101/2022.04.07.487513] [Reference Citation Analysis]
|
56 |
Sun L, Zhang M, Shi Y, Fang L, Cao F. Rational design of mixed nanomicelle eye drops with structural integrity investigation. Acta Biomater 2022;141:164-77. [PMID: 35032720 DOI: 10.1016/j.actbio.2022.01.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
57 |
Bost JP, Ojansivu M, Munson MJ, Wesén E, Gallud A, Gupta D, Gustafsson O, Saher O, Rädler J, Higgins SG, Lehto T, Holme MN, Dahlén A, Engkvist O, Strömstedt PE, Andersson S, Edvard Smith CI, Stevens MM, Esbjörner EK, Collén A, El Andaloussi S. Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides. Commun Biol 2022;5:185. [PMID: 35233031 DOI: 10.1038/s42003-022-03132-2] [Reference Citation Analysis]
|
58 |
Kim HJ, Seo SK, Park HY. Physical and chemical advances of synthetic delivery vehicles to enhance mRNA vaccine efficacy. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.03.029] [Reference Citation Analysis]
|
59 |
Bamburowicz-klimkowska M, Kasprzak A, Bystrzejewski M, Poplawska M, Sobczak K, Grudzinski IP. Characteristics of glucose oxidase immobilized on carbon-encapsulated iron nanoparticles decorated with polyethyleneimine. Polym Bull . [DOI: 10.1007/s00289-022-04125-1] [Reference Citation Analysis]
|
60 |
Mejia F, Khan S, Bilgicer B. Liposomal Targeting Modifies Endosomal Escape: Design and Mechanistic Implications. ACS Biomater Sci Eng 2022. [PMID: 35171570 DOI: 10.1021/acsbiomaterials.2c00100] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
61 |
Paris JL, Gaspar R, Coelho F, De Beule PAA, Silva BFB. Stability Criterion for the Assembly of Hybrid Lipid-Polymer-Nucleic Acid Nanoparticles.. [DOI: 10.1101/2022.02.06.479316] [Reference Citation Analysis]
|
62 |
Xu ZPG. Strategy for Cytoplasmic Delivery Using Inorganic Particles. Pharm Res 2022. [PMID: 35112228 DOI: 10.1007/s11095-022-03178-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
63 |
Salvati A, Poelstra K. Drug Targeting and Nanomedicine: Lessons Learned from Liver Targeting and Opportunities for Drug Innovation. Pharmaceutics 2022;14:217. [DOI: 10.3390/pharmaceutics14010217] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
64 |
Hori K, Yoshimoto S, Yoshino T, Zako T, Hirao G, Fujita S, Nakamura C, Yamagishi A, Kamiya N. Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces. J Biosci Bioeng 2022:S1389-1723(21)00331-5. [PMID: 34998688 DOI: 10.1016/j.jbiosc.2021.12.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
65 |
Cheng Y. Peptide-Modified Polycations with Acid-Triggered Lytic Activity for Efficient Gene Delivery. Biomaterial Engineering 2022. [DOI: 10.1007/978-981-16-5419-0_1] [Reference Citation Analysis]
|
66 |
Zhou L, Guan Q, Zhou W, Kan J, Dong Y. Ambient synthesis of an iminium-linked covalent organic framework for synergetic RNA interference and metabolic therapy of fibrosarcoma. Chem Sci . [DOI: 10.1039/d2sc02297d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
67 |
Coelho F, Salonen LM, Silva BFB. Hemiacetal-linked pH-sensitive PEG-lipids for non-viral gene delivery. New J Chem . [DOI: 10.1039/d2nj02217f] [Reference Citation Analysis]
|
68 |
Zhu J, Feng J, Zhang X. Preparation and Evaluation of Virus-Inspired Nanogenes for Host-Specific Transfection. Biomaterial Engineering 2022. [DOI: 10.1007/978-981-16-5419-0_24] [Reference Citation Analysis]
|
69 |
Wang G, Chen S, Shen Y. Virus-Mimetic DNA-Ejecting Polyplexes for Cancer Gene Delivery. Biomaterial Engineering 2022. [DOI: 10.1007/978-981-16-5419-0_21] [Reference Citation Analysis]
|
70 |
Li X, Montague EC, Pollinzi A, Lofts A, Hoare T. Design of Smart Size-, Surface-, and Shape-Switching Nanoparticles to Improve Therapeutic Efficacy. Small 2021;:e2104632. [PMID: 34936204 DOI: 10.1002/smll.202104632] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
71 |
Rajdev P, Dey P, Ghosh I, Khamrui R, Kar J, Jana SS, Ghosh S. Shape-Dependent Cellular Uptake of Nanostructures Produced from Supramolecular Structure-Directing Unit-Appended Hydrophilic Polymers. ACS Macro Lett 2021;10:1467-73. [PMID: 35549136 DOI: 10.1021/acsmacrolett.1c00588] [Reference Citation Analysis]
|
72 |
Hussain Y, Cui JH, Khan H, Makvandi P, Alam W. Biomacromolecule-mediated pulmonary delivery of siRNA and anti-sense oligos: challenges and possible solutions. Expert Rev Mol Med 2021;23:e22. [PMID: 34906269 DOI: 10.1017/erm.2021.25] [Reference Citation Analysis]
|
73 |
Van Zundert I, Bravo M, Deschaume O, Cybulski P, Bartic C, Hofkens J, Uji-I H, Fortuni B, Rocha S. Versatile and Robust Method for Antibody Conjugation to Nanoparticles with High Targeting Efficiency. Pharmaceutics 2021;13:2153. [PMID: 34959436 DOI: 10.3390/pharmaceutics13122153] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
74 |
Liu J, Sheng J, Shao L, Zheng Q, Li W, Chen X, Mao L, Wang M. Tetraphenylethylene-Featured Fluorescent Supramolecular Nanoparticles for Intracellular Trafficking of Protein Delivery and Neuroprotection. Angew Chem Int Ed Engl 2021;60:26740-6. [PMID: 34622541 DOI: 10.1002/anie.202111213] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
75 |
Kulikova T, Padnya P, Shiabiev I, Rogov A, Stoikov I, Evtugyn G. Electrochemical Sensing of Interactions between DNA and Charged Macrocycles. Chemosensors 2021;9:347. [DOI: 10.3390/chemosensors9120347] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
76 |
Elistratova JG, Mikhaylov MA, Sukhikh TS, Kholin KV, Nizameev IR, Khazieva AR, Gubaidullin AT, Voloshina AD, Sibgatullina GV, Samigullin DV, Petrov KA, Sokolov MN, Mustafina AR. Anticancer potential of hexamolybdenum clusters [{Mo6I8}(L)6]2− (L = CF3COO− and C6F5COO−) incorporated into different nanoparticulate forms. Journal of Molecular Liquids 2021;343:117601. [DOI: 10.1016/j.molliq.2021.117601] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
77 |
Coelho F, Botelho C, Paris JL, Marques EF, Silva BF. Influence of the media ionic strength on the formation and in vitro biological performance of polycation-DNA complexes. Journal of Molecular Liquids 2021;344:117930. [DOI: 10.1016/j.molliq.2021.117930] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
78 |
Joshi B, Ortiz D, Zuhorn I. Converting extracellular vesicles into nanomedicine: loading and unloading of cargo. Materials Today Nano 2021;16:100148. [DOI: 10.1016/j.mtnano.2021.100148] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
79 |
Zhang H, Keskin D, de Haan-Visser WH, Zu G, van Rijn P, Zuhorn IS. Aliphatic Quaternary Ammonium Functionalized Nanogels for Gene Delivery. Pharmaceutics 2021;13:1964. [PMID: 34834380 DOI: 10.3390/pharmaceutics13111964] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
80 |
Hamelmann NM, Paats JD, Paulusse JMJ. Cytosolic Delivery of Single-Chain Polymer Nanoparticles. ACS Macro Lett 2021;10:1443-9. [PMID: 35549017 DOI: 10.1021/acsmacrolett.1c00558] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
81 |
Liu J, Sheng J, Shao L, Zheng Q, Li W, Chen X, Mao L, Wang M. Tetraphenylethylene‐Featured Fluorescent Supramolecular Nanoparticles for Intracellular Trafficking of Protein Delivery and Neuroprotection. Angew Chem 2021;133:26944-50. [DOI: 10.1002/ange.202111213] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
82 |
Maiti B, Bhattacharya S. Liposomal nanoparticles based on steroids and isoprenoids for nonviral gene delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1759. [PMID: 34729941 DOI: 10.1002/wnan.1759] [Reference Citation Analysis]
|
83 |
Bami MS, Raeisi Estabragh MA, Khazaeli P, Ohadi M, Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. Journal of Drug Delivery Science and Technology 2021. [DOI: 10.1016/j.jddst.2021.102987] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
84 |
Kim HJ, Kim A, Miyata K. Synthetic molecule libraries for nucleic acid delivery: Design parameters in cationic/ionizable lipids and polymers. Drug Metab Pharmacokinet 2021;42:100428. [PMID: 34837771 DOI: 10.1016/j.dmpk.2021.100428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
85 |
Marschall ALJ. Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs 2021;35:643-71. [PMID: 34705260 DOI: 10.1007/s40259-021-00500-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
86 |
Iqbal S, Luo B, Melamed JR, Day ES. Critical Evaluation of Different Lysosomal Labeling Methods Used to Analyze RNA Nanocarrier Trafficking in Cells. Bioconjug Chem 2021;32:2245-56. [PMID: 34543006 DOI: 10.1021/acs.bioconjchem.1c00405] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
87 |
Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev 2021;177:113948. [PMID: 34464665 DOI: 10.1016/j.addr.2021.113948] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
88 |
Van Zundert I, Bravo M, Deschaume O, Cybulski P, Bartic C, Hofkens J, Uji-i H, Fortuni B, Rocha S. Versatile and Robust method for Antibody Conjugation to Nanoparticles with High Targeting Efficiency.. [DOI: 10.1101/2021.09.29.462399] [Reference Citation Analysis]
|
89 |
Bakhtiar A, Neah AS, Ng KY, Chowdhury EH. In vivo evaluation of biodistribution and toxicity of pH-responsive strontium nanoparticles for gene delivery. J Pharm Investig 2022;52:95-107. [DOI: 10.1007/s40005-021-00547-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
90 |
Carballo-Pedrares N, Kattar A, Concheiro A, Alvarez-Lorenzo C, Rey-Rico A. Niosomes-based gene delivery systems for effective transfection of human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 2021;128:112307. [PMID: 34474858 DOI: 10.1016/j.msec.2021.112307] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
91 |
Faizullin BA, Strelnik ID, Dayanova IR, Gerasimova TP, Kholin KV, Nizameev IR, Voloshina AD, Gubaidullin AT, Fedosimova SV, Mikhailov MA, Sokolov MN, Sibgatullina GV, Samigullin DV, Petrov KA, Karasik AA, Mustafina AR. Structure impact on photodynamic therapy and cellular contrasting functions of colloids constructed from dimeric Au(I) complex and hexamolybdenum clusters. Mater Sci Eng C Mater Biol Appl 2021;128:112355. [PMID: 34474903 DOI: 10.1016/j.msec.2021.112355] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
|
92 |
Sun Z, Huang J, Su L, Li J, Qi F, Su H, Chen Y, Zhang Q, Zhang Q, Li Z, Zhang S. Arf6-mediated macropinocytosis-enhanced suicide gene therapy of C16TAB-condensed Tat/pDNA nanoparticles in ovarian cancer. Nanoscale 2021;13:14538-51. [PMID: 34473182 DOI: 10.1039/d1nr03974a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
93 |
Xu X, Liu C, Wang Y, Koivisto O, Zhou J, Shu Y, Zhang H. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev 2021;176:113891. [PMID: 34324887 DOI: 10.1016/j.addr.2021.113891] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 11.0] [Reference Citation Analysis]
|
94 |
Ewert KK, Scodeller P, Simón-Gracia L, Steffes VM, Wonder EA, Teesalu T, Safinya CR. Cationic Liposomes as Vectors for Nucleic Acid and Hydrophobic Drug Therapeutics. Pharmaceutics 2021;13:1365. [PMID: 34575441 DOI: 10.3390/pharmaceutics13091365] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
|
95 |
Nezhadi S, Dorkoosh FA. Co-delivery systems: hope for clinical application? Drug Deliv Transl Res 2021. [PMID: 34402023 DOI: 10.1007/s13346-021-01041-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
96 |
Lameh S, Zhao T, Stein D. Electrokinetic-Noise-Assisted Barrier Crossing in a Nanofluidic Environment. Phys Rev Applied 2021;16:024019. [DOI: 10.1103/physrevapplied.16.024019] [Reference Citation Analysis]
|
97 |
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021;175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
98 |
Wang G, Chen S, Qiu N, Wu B, Zhu D, Zhou Z, Piao Y, Tang J, Shen Y. Virus-mimetic DNA-ejecting polyplexes for efficient intracellular cancer gene delivery. Nano Today 2021;39:101215. [DOI: 10.1016/j.nantod.2021.101215] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
|
99 |
Maddila SC, Voshavar C, Arjunan P, Chowath RP, Rachamalla HKR, Balakrishnan B, Balasubramanian P, Banerjee R, Marepally S. Cholesterol Sequestration from Caveolae/Lipid Rafts Enhances Cationic Liposome-Mediated Nucleic Acid Delivery into Endothelial Cells. Molecules 2021;26:4626. [PMID: 34361779 DOI: 10.3390/molecules26154626] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
100 |
Tieu T, Wei Y, Cifuentes‐rius A, Voelcker NH. Overcoming Barriers: Clinical Translation of siRNA Nanomedicines. Adv Therap 2021;4:2100108. [DOI: 10.1002/adtp.202100108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
101 |
Wang H, Deng H, Gao M, Zhang W. Self-Assembled Nanogels Based on Ionic Gelation of Natural Polysaccharides for Drug Delivery. Front Bioeng Biotechnol 2021;9:703559. [PMID: 34336811 DOI: 10.3389/fbioe.2021.703559] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
102 |
Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. Adv Sci (Weinh) 2021;8:2100540. [PMID: 34306980 DOI: 10.1002/advs.202100540] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
|
103 |
Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021;174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
104 |
Yang J, Song L, Shen M, Gou X, Bai L, Wang L, Zhang W, Wu Q, Gong C. Hierarchically Responsive Tumor‐Microenvironment‐Activated Nano‐Artificial Virus for Precise Exogenous and Endogenous Apoptosis Coactivation. Adv Funct Mater 2021;31:2104423. [DOI: 10.1002/adfm.202104423] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
105 |
Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Aldhaher A, Makvandi P, Dinarvand R, Jouyandeh M, Saeb MR, Mozafari M, Shokouhimehr M, Hamblin MR, Varma RS. Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Appl Bio Mater 2021;4:5336-51. [PMID: 35007014 DOI: 10.1021/acsabm.1c00447] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 21.5] [Reference Citation Analysis]
|
106 |
Liufu C, Li Y, Lin Y, Yu J, Du M, Chen Y, Yang Y, Gong X, Chen Z. Synergistic ultrasonic biophysical effect-responsive nanoparticles for enhanced gene delivery to ovarian cancer stem cells. Drug Deliv 2020;27:1018-33. [PMID: 32627597 DOI: 10.1080/10717544.2020.1785583] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
107 |
Petrini M, Lokerse WJM, Mach A, Hossann M, Merkel OM, Lindner LH. Effects of Surface Charge, PEGylation and Functionalization with Dipalmitoylphosphatidyldiglycerol on Liposome-Cell Interactions and Local Drug Delivery to Solid Tumors via Thermosensitive Liposomes. Int J Nanomedicine 2021;16:4045-61. [PMID: 34163158 DOI: 10.2147/IJN.S305106] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
108 |
Zhdanov VP. Virology from the perspective of theoretical colloid and interface science. Curr Opin Colloid Interface Sci 2021;53:101450. [PMID: 36568530 DOI: 10.1016/j.cocis.2021.101450] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
109 |
Xu Y, Liu R, Dai Z. Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing. Nanoscale 2020;12:21001-14. [PMID: 33078813 DOI: 10.1039/d0nr05452f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
|
110 |
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Cited by in Crossref: 41] [Cited by in F6Publishing: 51] [Article Influence: 20.5] [Reference Citation Analysis]
|
111 |
Tarakanchikova YV, Linnik DS, Mashel T, Muslimov AR, Pavlov S, Lepik KV, Zyuzin MV, Sukhorukov GB, Timin AS. Boosting transfection efficiency: A systematic study using layer-by-layer based gene delivery platform. Mater Sci Eng C Mater Biol Appl 2021;126:112161. [PMID: 34082966 DOI: 10.1016/j.msec.2021.112161] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
112 |
Dutta K, Das R, Medeiros J, Kanjilal P, Thayumanavan S. Charge‐Conversion Strategies for Nucleic Acid Delivery. Adv Funct Mater 2021;31:2011103. [DOI: 10.1002/adfm.202011103] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
113 |
He WR, Cao LB, Yang YL, Hua D, Hu MM, Shu HB. VRK2 is involved in the innate antiviral response by promoting mitostress-induced mtDNA release. Cell Mol Immunol 2021;18:1186-96. [PMID: 33785841 DOI: 10.1038/s41423-021-00673-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
|
114 |
Kim H, Yuk SA, Dieterly AM, Kwon S, Park J, Meng F, Gadalla HH, Cadena MJ, Lyle LT, Yeo Y. Nanosac, a Noncationic and Soft Polyphenol Nanocapsule, Enables Systemic Delivery of siRNA to Solid Tumors. ACS Nano 2021;15:4576-93. [PMID: 33645963 DOI: 10.1021/acsnano.0c08694] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
|
115 |
Miyamoto T, Tsuchiya K, Numata K. Endosome-escaping micelle complexes dually equipped with cell-penetrating and endosome-disrupting peptides for efficient DNA delivery into intact plants. Nanoscale 2021;13:5679-92. [PMID: 33595040 DOI: 10.1039/d0nr08183c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
116 |
Sawdon AJ, Zhang J, Peng S, Alyami EM, Peng CA. Polymeric Nanovectors Incorporated with Ganciclovir and HSV-tk Encoding Plasmid for Gene-Directed Enzyme Prodrug Therapy. Molecules 2021;26:1759. [PMID: 33801024 DOI: 10.3390/molecules26061759] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
117 |
Khazieva A, Kholin K, Nizameev I, Brylev K, Kashnik I, Voloshina A, Lyubina A, Gubaidullin A, Daminova A, Petrov K, Mustafina A. Surface modification of silica nanoparticles by hexarhenium anionic cluster complexes for pH-sensing and staining of cell nuclei. J Colloid Interface Sci 2021;594:759-69. [PMID: 33789187 DOI: 10.1016/j.jcis.2021.03.082] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
118 |
Dash BS, Jose G, Lu YJ, Chen JP. Functionalized Reduced Graphene Oxide as a Versatile Tool for Cancer Therapy. Int J Mol Sci 2021;22:2989. [PMID: 33804239 DOI: 10.3390/ijms22062989] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 20.0] [Reference Citation Analysis]
|
119 |
Zou M, Du Y, Liu R, Zheng Z, Xu J. Nanocarrier-delivered small interfering RNA for chemoresistant ovarian cancer therapy. Wiley Interdiscip Rev RNA 2021;12:e1648. [PMID: 33682310 DOI: 10.1002/wrna.1648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
120 |
Egorova KS, Posvyatenko AV, Larin SS, Ananikov VP. Ionic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Res 2021;49:1201-34. [PMID: 33476366 DOI: 10.1093/nar/gkaa1280] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
121 |
Sun J, Wang J, Hu W, Wang Y, Chou T, Zhang Q, Zhang B, Yu Z, Yang Y, Ren L, Wang H. Camouflaged Gold Nanodendrites Enable Synergistic Photodynamic Therapy and NIR Biowindow II Photothermal Therapy and Multimodal Imaging. ACS Appl Mater Interfaces 2021;13:10778-95. [PMID: 33646767 DOI: 10.1021/acsami.1c01238] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
|
122 |
Kho KW, Berselli GB, Keyes TE. A Nanoplasmonic Assay of Oligonucleotide-Cargo Delivery from Cationic Lipoplexes. Small 2021;17:e2005815. [PMID: 33634594 DOI: 10.1002/smll.202005815] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
123 |
van den Berg AIS, Yun CO, Schiffelers RM, Hennink WE. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J Control Release 2021;331:121-41. [PMID: 33453339 DOI: 10.1016/j.jconrel.2021.01.014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 17.0] [Reference Citation Analysis]
|
124 |
Wadetwar RN, Godbole AP. Nanocarriers: A Tool for Effective Gene Delivery. Nanopharmaceutical Advanced Delivery Systems 2021. [DOI: 10.1002/9781119711698.ch8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
125 |
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer-based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021;60:13225-43. [PMID: 32893932 DOI: 10.1002/anie.202010282] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|
126 |
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer‐based Carriers for DNA Vaccine Design. Angew Chem 2021;133:13333-51. [DOI: 10.1002/ange.202010282] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
127 |
Wang C, Wang X, Du L, Dong Y, Hu B, Zhou J, Shi Y, Bai S, Huang Y, Cao H, Liang Z, Dong A. Harnessing pH-Sensitive Polycation Vehicles for the Efficient siRNA Delivery. ACS Appl Mater Interfaces 2021;13:2218-29. [DOI: 10.1021/acsami.0c17866] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
128 |
Zheng X, Wang J, Rao J. The Chemistry in Surface Functionalization of Nanoparticles for Molecular Imaging. Molecular Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00021-1] [Reference Citation Analysis]
|
129 |
Harishkumar R, Selvaraj CI, Anand K. Nanosomes for drug delivery. Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications 2021. [DOI: 10.1016/b978-0-12-821013-0.00017-9] [Reference Citation Analysis]
|
130 |
Han M, Beon J, Lee JY, Oh SS. Systematic Combination of Oligonucleotides and Synthetic Polymers for Advanced Therapeutic Applications. Macromol Res 2021;29:665-80. [PMID: 34754286 DOI: 10.1007/s13233-021-9093-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
131 |
Cheng Y. Peptide-Modified Polycations with Acid-Triggered Lytic Activity for Efficient Gene Delivery. Biomaterial Engineering 2021. [DOI: 10.1007/978-981-33-6198-0_1-1] [Reference Citation Analysis]
|
132 |
Andrian T, Riera R, Pujals S, Albertazzi L. Nanoscopy for endosomal escape quantification. Nanoscale Adv 2021;3:10-23. [DOI: 10.1039/d0na00454e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
133 |
Zhu J, Feng J, Zhang X. Preparation and Evaluation of Virus-Inspired Nanogenes for Host-Specific Transfection. Biomaterial Engineering 2021. [DOI: 10.1007/978-981-33-6198-0_24-1] [Reference Citation Analysis]
|
134 |
Wang G, Chen S, Shen Y. Virus-Mimetic DNA-Ejecting Polyplexes for Cancer Gene Delivery. Biomaterial Engineering 2021. [DOI: 10.1007/978-981-33-6198-0_21-1] [Reference Citation Analysis]
|
135 |
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020;25:E5963. [PMID: 33339365 DOI: 10.3390/molecules25245963] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
136 |
Dhumal DM, Patil PD, Kulkarni RV, Akamanchi KG. Experimentally Validated QSAR Model for Surface pK a Prediction of Heterolipids Having Potential as Delivery Materials for Nucleic Acid Therapeutics. ACS Omega 2020;5:32023-31. [PMID: 33344856 DOI: 10.1021/acsomega.0c04931] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
137 |
Cao J, Huang D, Peppas NA. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev 2020;167:170-88. [PMID: 32622022 DOI: 10.1016/j.addr.2020.06.030] [Cited by in Crossref: 60] [Cited by in F6Publishing: 66] [Article Influence: 20.0] [Reference Citation Analysis]
|
138 |
Li Y, Liu L, Ji W, Peng H, Zhao R, Zhang X. Strategies and materials of "SMART" non-viral vectors: Overcoming the barriers for brain gene therapy. Nano Today 2020;35:101006. [DOI: 10.1016/j.nantod.2020.101006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
139 |
Kumar R, Le N, Tan Z, Brown ME, Jiang S, Reineke TM. Efficient Polymer-Mediated Delivery of Gene-Editing Ribonucleoprotein Payloads through Combinatorial Design, Parallelized Experimentation, and Machine Learning. ACS Nano 2020. [PMID: 33225680 DOI: 10.1021/acsnano.0c08549] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 8.7] [Reference Citation Analysis]
|
140 |
Jaudoin C, Agnely F, Nguyen Y, Ferrary E, Bochot A. Nanocarriers for drug delivery to the inner ear: Physicochemical key parameters, biodistribution, safety and efficacy. Int J Pharm 2021;592:120038. [PMID: 33159985 DOI: 10.1016/j.ijpharm.2020.120038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
|
141 |
Salim L, Desaulniers JP. To Conjugate or to Package? A Look at Targeted siRNA Delivery Through Folate Receptors. Nucleic Acid Ther 2021;31:21-38. [PMID: 33121373 DOI: 10.1089/nat.2020.0893] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
142 |
Gaspar R, Coelho F, Silva BFB. Lipid-Nucleic Acid Complexes: Physicochemical Aspects and Prospects for Cancer Treatment. Molecules 2020;25:E5006. [PMID: 33126767 DOI: 10.3390/molecules25215006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
143 |
Clegg JR, Sun JA, Gu J, Venkataraman AK, Peppas NA. Peptide conjugation enhances the cellular co-localization, but not endosomal escape, of modular poly(acrylamide-co-methacrylic acid) nanogels. J Control Release 2021;329:1162-71. [PMID: 33127451 DOI: 10.1016/j.jconrel.2020.10.045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
144 |
Neva T, Carbajo-Gordillo AI, Benito JM, Lana H, Marcelo G, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Tuning the Topological Landscape of DNA-Cyclodextrin Nanocomplexes by Molecular Design. Chemistry 2020;26:15259-69. [PMID: 32710799 DOI: 10.1002/chem.202002951] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
145 |
Zu G, Mergel O, Ribovski L, Bron R, Zuhorn IS, van Rijn P. Nanogels with Selective Intracellular Reactivity for Intracellular Tracking and Delivery. Chemistry 2020;26:15084-8. [PMID: 32608127 DOI: 10.1002/chem.202001802] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
146 |
Liu Z, Huang L, Xue W. pH-responsive vaccine delivery systems for improving cellular immunity. Progress in Natural Science: Materials International 2020;30:609-17. [DOI: 10.1016/j.pnsc.2020.07.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
147 |
Lo PY, Lee GY, Zheng JH, Huang JH, Cho EC, Lee KC. GFP Plasmid and Chemoreagent Conjugated with Graphene Quantum Dots as a Novel Gene Delivery Platform for Colon Cancer Inhibition In Vitro and In Vivo. ACS Appl Bio Mater 2020;3:5948-56. [PMID: 35021823 DOI: 10.1021/acsabm.0c00631] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
|
148 |
Kad A, Pundir A, Arya SK, Bhardwaj N, Khatri M. An Elucidative Review to Analytically Sieve the Viability of Nanomedicine Market. J Pharm Innov 2020;:1-17. [PMID: 32983280 DOI: 10.1007/s12247-020-09495-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
149 |
Shah H, Tariq I, Engelhardt K, Bakowsky U, Pinnapireddy SR. Development and Characterization of Ultrasound Activated Lipopolyplexes for Enhanced Transfection by Low Frequency Ultrasound in In Vitro Tumor Model. Macromol Biosci 2020;20:2000173. [DOI: 10.1002/mabi.202000173] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
150 |
Rabiee N, Bagherzadeh M, Tavakolizadeh M, Pourjavadi A, Atarod M, Webster TJ. Synthesis, characterization and mechanistic study of nano chitosan tetrazole as a novel and promising platform for CRISPR delivery. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2020.1809405] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
151 |
Steinman NY, Campos LM, Feng Y, Domb AJ, Hosseinkhani H. Cyclopropenium Nanoparticles and Gene Transfection in Cells. Pharmaceutics 2020;12:E768. [PMID: 32823739 DOI: 10.3390/pharmaceutics12080768] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
|
152 |
Adeyinka OS, Riaz S, Toufiq N, Yousaf I, Bhatti MU, Batcho A, Olajide AA, Nasir IA, Tabassum B. Advances in exogenous RNA delivery techniques for RNAi-mediated pest control. Mol Biol Rep 2020;47:6309-19. [DOI: 10.1007/s11033-020-05666-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
|
153 |
Pan X, Xu D, Tang X, Liu N, You Y, Wang X, Yan X, Ma X, Chen X. Endocytosis‐Enabled Construction of Silica Nanochannels Crossing Living Cell Membrane for Transmembrane Drug Transport. Adv Funct Mater 2020;30:2002761. [DOI: 10.1002/adfm.202002761] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
154 |
Chang R, Yan Q, Kingshott P, Tsai WB, Wang PY. Harnessing the perinuclear actin cap (pnAC) to influence nanocarrier trafficking and gene transfection efficiency in skeletal myoblasts using nanopillars. Acta Biomater 2020;111:221-31. [PMID: 32442782 DOI: 10.1016/j.actbio.2020.05.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
155 |
Ramírez-Acosta CM, Cifuentes J, Castellanos MC, Moreno RJ, Muñoz-Camargo C, Cruz JC, Reyes LH. PH-Responsive, Cell-Penetrating, Core/Shell Magnetite/Silver Nanoparticles for the Delivery of Plasmids: Preparation, Characterization, and Preliminary In Vitro Evaluation. Pharmaceutics 2020;12:E561. [PMID: 32560390 DOI: 10.3390/pharmaceutics12060561] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
|
156 |
Mainini F, Eccles MR. Lipid and Polymer-Based Nanoparticle siRNA Delivery Systems for Cancer Therapy. Molecules 2020;25:E2692. [PMID: 32532030 DOI: 10.3390/molecules25112692] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 13.3] [Reference Citation Analysis]
|
157 |
Uğurlu Ö, Barlas FB, Evran S, Timur S. The cell-penetrating YopM protein-functionalized quantum dot-plasmid DNA conjugate as a novel gene delivery vector. Plasmid 2020;110:102513. [PMID: 32502501 DOI: 10.1016/j.plasmid.2020.102513] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
158 |
Miao L, Lin J, Huang Y, Li L, Delcassian D, Ge Y, Shi Y, Anderson DG. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat Commun 2020;11:2424. [PMID: 32415122 DOI: 10.1038/s41467-020-16248-y] [Cited by in Crossref: 65] [Cited by in F6Publishing: 73] [Article Influence: 21.7] [Reference Citation Analysis]
|
159 |
He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. Adv Funct Mater 2020;30:1910566. [DOI: 10.1002/adfm.201910566] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 16.7] [Reference Citation Analysis]
|
160 |
Joshi BS, de Beer MA, Giepmans BNG, Zuhorn IS. Endocytosis of Extracellular Vesicles and Release of Their Cargo from Endosomes. ACS Nano 2020;14:4444-55. [PMID: 32282185 DOI: 10.1021/acsnano.9b10033] [Cited by in Crossref: 136] [Cited by in F6Publishing: 143] [Article Influence: 45.3] [Reference Citation Analysis]
|
161 |
Bruininks BM, Souza PC, Ingolfsson H, Marrink SJ. A molecular view on the escape of lipoplexed DNA from the endosome. Elife 2020;9:e52012. [PMID: 32297853 DOI: 10.7554/eLife.52012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
|
162 |
Şen S, Top A. Potansiyel doksorubisin taşıyıcı sistemi olarak PEG-endozom parçalayıcı peptit konjugatının değerlendirilmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2020. [DOI: 10.17341/gazimmfd.629183] [Reference Citation Analysis]
|
163 |
Rayamajhi S, Marchitto J, Nguyen TDT, Marasini R, Celia C, Aryal S. pH-responsive cationic liposome for endosomal escape mediated drug delivery. Colloids and Surfaces B: Biointerfaces 2020;188:110804. [DOI: 10.1016/j.colsurfb.2020.110804] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 12.7] [Reference Citation Analysis]
|
164 |
Cunningham AJ, Gibson VP, Banquy X, Zhu X, Jeanne LC. Cholic acid-based mixed micelles as siRNA delivery agents for gene therapy. International Journal of Pharmaceutics 2020;578:119078. [DOI: 10.1016/j.ijpharm.2020.119078] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
|
165 |
Patiño Vargas MI, Mesa Cadavid M, Arenas Gómez CM, Diosa Arango J, Restrepo Múnera LM, Becerra Colorado NY. Polyplexes System to Enhance the LL-37 Antimicrobial Peptide Expression in Human Skin Cells. Tissue Eng Part A 2020;26:400-10. [PMID: 31805827 DOI: 10.1089/ten.TEA.2019.0196] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
166 |
Li C, Cao X, Zhao J, Wang F. Effective Therapeutic Drug Delivery by GALA3, an Endosomal Escape Peptide with Reduced Hydrophobicity. J Membrane Biol 2020;253:139-52. [DOI: 10.1007/s00232-020-00109-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
167 |
Zhang C, Zhang S, Zhi D, Zhao Y, Cui S, Cui J. Co-delivery of paclitaxel and survivin siRNA with cationic liposome for lung cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;585:124054. [DOI: 10.1016/j.colsurfa.2019.124054] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
|
168 |
Xia Q, Zhu T, Jiang Z, Ding H, Ma Y. Enhancing the targeting ability of nanoparticles via protected copolymers. Nanoscale 2020;12:7804-13. [DOI: 10.1039/d0nr01176b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
169 |
Bansal SK, Rajpoot K, Sreeharsha N, Youngren-ortiz SR, Anup N, Tekade RK. Endosomal escape tendency of drug delivery systems to mediate cytosolic delivery of therapeutics. The Future of Pharmaceutical Product Development and Research 2020. [DOI: 10.1016/b978-0-12-814455-8.00007-4] [Reference Citation Analysis]
|
170 |
Gao B, Wang X, Wang M, Ren X, Guo J, Xia S, Zhang W, Feng Y. From single to a dual-gene delivery nanosystem: coordinated expression matters for boosting the neovascularization in vivo. Biomater Sci 2020;8:2318-28. [DOI: 10.1039/c9bm02000d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
171 |
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019;24:69. [PMID: 31867046 DOI: 10.1186/s11658-019-0196-3] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 12.3] [Reference Citation Analysis]
|
172 |
Liang L, Zhang Y, Kong Z, Liu F, Shen JW, He Z, Wang H. DNA fragment translocation through the lipid membrane assisted by carbon nanotube. Int J Pharm 2020;574:118921. [PMID: 31812796 DOI: 10.1016/j.ijpharm.2019.118921] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
173 |
van IJzendoorn SCD, Agnetti J, Gassama-Diagne A. Mechanisms behind the polarized distribution of lipids in epithelial cells. Biochim Biophys Acta Biomembr 2020;1862:183145. [PMID: 31809710 DOI: 10.1016/j.bbamem.2019.183145] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|