BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Parkinson EI, Hergenrother PJ. Deoxynyboquinones as NQO1-Activated Cancer Therapeutics. Acc Chem Res 2015;48:2715-23. [PMID: 26444384 DOI: 10.1021/acs.accounts.5b00365] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 7.6] [Reference Citation Analysis]
Number Citing Articles
1 Yang Z, He J, Lu A, Hou T, Cao D. Frequent hitters: nuisance artifacts in high-throughput screening. Drug Discovery Today 2020;25:657-67. [DOI: 10.1016/j.drudis.2020.01.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
2 Kadela-tomanek M, Jastrzębska M, Pawełczak B, Bębenek E, Chrobak E, Latocha M, Książek M, Kusz J, Boryczka S. Alkynyloxy derivatives of 5,8-quinolinedione: Synthesis, in vitro cytotoxicity studies and computational molecular modeling with NAD(P)H:Quinone oxidoreductase 1. European Journal of Medicinal Chemistry 2017;126:969-82. [DOI: 10.1016/j.ejmech.2016.12.031] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
3 Yang Y, Qi F, Qian Y, Bao X, Zhang H, Ma B, Dai F, Zhang S, Zhou B. Developing Push–Pull Hydroxylphenylpolyenylpyridinium Chromophores as Ratiometric Two-Photon Fluorescent Probes for Cellular and Intravital Imaging of Mitochondrial NQO1. Anal Chem 2021;93:2385-93. [DOI: 10.1021/acs.analchem.0c04279] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Gopinath P, Mahammed A, Eilon-shaffer T, Nawatha M, Ohayon S, Shabat D, Gross Z, Brik A. Switching Futile para -Quinone to Efficient Reactive Oxygen Species Generator: Ubiquitin-Specific Protease-2 Inhibition, Electrocatalysis, and Quantification. ChemBioChem 2017;18:1683-7. [DOI: 10.1002/cbic.201700330] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
5 Dharmaraja AT. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J Med Chem 2017;60:3221-40. [DOI: 10.1021/acs.jmedchem.6b01243] [Cited by in Crossref: 204] [Cited by in F6Publishing: 165] [Article Influence: 40.8] [Reference Citation Analysis]
6 Scherz LF, Abdel-Rahman EA, Ali SS, Schlüter AD, Abdel-Rahman MA. Design, synthesis and cytotoxic activity of water-soluble quinones with dibromo-p-benzoquinone cores and amino oligo(ethylene glycol) side chains against MCF-7 breast cancer cells. Medchemcomm 2017;8:662-72. [PMID: 30108784 DOI: 10.1039/c6md00728g] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
7 Yu J, Zhong B, Jin L, Hou Y, Ai N, Ge W, Li L, Liu S, Lu JJ, Chen X. 2-Methoxy-6-acetyl-7-methyljuglone (MAM) induced programmed necrosis in glioblastoma by targeting NAD(P)H: Quinone oxidoreductase 1 (NQO1). Free Radic Biol Med 2020;152:336-47. [PMID: 32234332 DOI: 10.1016/j.freeradbiomed.2020.03.026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
8 Wu X, Li X, Li Z, Yu Y, You Q, Zhang X. Discovery of Nonquinone Substrates for NAD(P)H: Quinone Oxidoreductase 1 (NQO1) as Effective Intracellular ROS Generators for the Treatment of Drug-Resistant Non-Small-Cell Lung Cancer. J Med Chem 2018;61:11280-97. [PMID: 30508483 DOI: 10.1021/acs.jmedchem.8b01424] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
9 Li Y, Chen M, Yao B, Lu X, Song B, Vasilatos SN, Zhang X, Ren X, Yao C, Bian W, Sun L. Dual pH/ROS‐Responsive Nanoplatform with Deep Tumor Penetration and Self‐Amplified Drug Release for Enhancing Tumor Chemotherapeutic Efficacy. Small 2020;16:2002188. [DOI: 10.1002/smll.202002188] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
10 López-Lira C, Alzate-Morales JH, Paulino M, Mella-Raipán J, Salas CO, Tapia RA, Soto-Delgado J. Combined molecular modelling and 3D-QSAR study for understanding the inhibition of NQO1 by heterocyclic quinone derivatives. Chem Biol Drug Des 2018;91:29-38. [PMID: 28643389 DOI: 10.1111/cbdd.13051] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
11 Kadela-tomanek M, Bębenek E, Chrobak E, Marciniec K, Latocha M, Kuśmierz D, Jastrzębska M, Boryczka S. Betulin-1,4-quinone hybrids: Synthesis, anticancer activity and molecular docking study with NQO1 enzyme. European Journal of Medicinal Chemistry 2019;177:302-15. [DOI: 10.1016/j.ejmech.2019.05.063] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
12 Bardell-Cox OA, White AJP, Aragón L, Fuchter MJ. Synthetic studies on the reverse antibiotic natural products, the nybomycins. Medchemcomm 2019;10:1438-44. [PMID: 31534658 DOI: 10.1039/c9md00207c] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Yang Q, Wen Y, Xu J, Shao S. An HBT-based fluorescent dye with enhanced quantum yield in water system and its application for constructing NQO1 fluorescent probe. Talanta 2020;216:120982. [DOI: 10.1016/j.talanta.2020.120982] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
14 Löcken H, Clamor C, Müller K. Napabucasin and Related Heterocycle-Fused Naphthoquinones as STAT3 Inhibitors with Antiproliferative Activity against Cancer Cells. J Nat Prod 2018;81:1636-44. [DOI: 10.1021/acs.jnatprod.8b00247] [Reference Citation Analysis]
15 Cho MK, Juvekar V, Lim CS, Noh C, Shin SJ, Kim HM. A Highly Sensitive Two‐Photon Ratiometric Probe for Rapid Detection of the hNQO1 Enzyme in Colon Cancer Tissue. Asian J Org Chem 2019;8:1707-12. [DOI: 10.1002/ajoc.201800694] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
16 Chen L, Xie Y, Luo Z, Liu L, Zou Z, Liu H, Kong F, Hao Y, Gao J, Wang L, Ma D, Liu S. Synthesis and biological evaluation of novel isothiazoloquinoline quinone analogues. Bioorganic & Medicinal Chemistry Letters 2020;30:127286. [DOI: 10.1016/j.bmcl.2020.127286] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Selvakumar R, Anantha Krishnan D, Ramakrishnan C, Velmurugan D, Gunasekaran K. Identification of novel NAD(P)H dehydrogenase [quinone] 1 antagonist using computational approaches. Journal of Biomolecular Structure and Dynamics 2020;38:682-96. [DOI: 10.1080/07391102.2019.1585291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Rashid MH, Babu D, Siraki AG. Interactions of the antioxidant enzymes NAD(P)H: Quinone oxidoreductase 1 (NQO1) and NRH: Quinone oxidoreductase 2 (NQO2) with pharmacological agents, endogenous biochemicals and environmental contaminants. Chem Biol Interact 2021;345:109574. [PMID: 34228969 DOI: 10.1016/j.cbi.2021.109574] [Reference Citation Analysis]
19 Gontijo TB, de Freitas RP, Emery FS, Pedrosa LF, Vieira Neto JB, Cavalcanti BC, Pessoa C, King A, de Moliner F, Vendrell M, da Silva Júnior EN. On the synthesis of quinone-based BODIPY hybrids: New insights on antitumor activity and mechanism of action in cancer cells. Bioorganic & Medicinal Chemistry Letters 2017;27:4446-56. [DOI: 10.1016/j.bmcl.2017.08.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
20 Chang J, Cai W, Liang C, Tang Q, Chen X, Jiang Y, Mao L, Wang M. Enzyme-Instructed Activation of Pro-protein Therapeutics In Vivo. J Am Chem Soc 2019;141:18136-41. [DOI: 10.1021/jacs.9b08669] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
21 Wu L, Ma X, Zhang C, Liu Z. Design, synthesis, and biological evaluation of 4-substituted-3,4-dihydrobenzo[h]quinoline-2,5,6(1H)-triones as NQO1-directed antitumor agents. European Journal of Medicinal Chemistry 2020;198:112396. [DOI: 10.1016/j.ejmech.2020.112396] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
22 Guo Y, Xu L, Ling C, Yang T, Zheng W, Lv J, Guo Q, Chen B. Novel β‐carboline‐based indole‐4,7‐quinone derivatives as NAD(P)H: Quinone‐oxidoreductase‐1 inhibitor with potent antitumor activities by inducing reactive oxygen species, apoptosis, and DNA damage. Chem Biol Drug Des 2020;96:1433-46. [DOI: 10.1111/cbdd.13752] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Kadela-tomanek M, Pawełczak B, Jastrzębska M, Bębenek E, Chrobak E, Latocha M, Kusz J, Książek M, Boryczka S. Structural, vibrational and quantum chemical investigations for 6,7-dichloro-2-methyl-5,8-quinolinedione. Cytotoxic and molecular docking studies. Journal of Molecular Structure 2018;1168:73-83. [DOI: 10.1016/j.molstruc.2018.05.031] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
24 Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J Med Chem 2018;61:6983-7003. [DOI: 10.1021/acs.jmedchem.8b00124] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 13.5] [Reference Citation Analysis]
25 Almeida RG, Valença WO, Rosa LG, de Simone CA, de Castro SL, Barbosa JMC, Pinheiro DP, Paier CRK, de Carvalho GGC, Pessoa C, Goulart MOF, Kharma A, da Silva Júnior EN. Synthesis of quinone imine and sulphur-containing compounds with antitumor and trypanocidal activities: redox and biological implications. RSC Med Chem 2020;11:1145-60. [PMID: 33479619 DOI: 10.1039/d0md00072h] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Wang X, Elshahawi SI, Ponomareva LV, Ye Q, Liu Y, Copley GC, Hower JC, Hatcher BE, Kharel MK, Van Lanen SG, She QB, Voss SR, Thorson JS, Shaaban KA. Structure Determination, Functional Characterization, and Biosynthetic Implications of Nybomycin Metabolites from a Mining Reclamation Site-Associated Streptomyces. J Nat Prod 2019;82:3469-76. [PMID: 31833370 DOI: 10.1021/acs.jnatprod.9b01015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
27 Pei Q, Lu S, Zhou J, Jiang B, Li C, Xie Z, Jing X. Intracellular Enzyme-Responsive Profluorophore and Prodrug Nanoparticles for Tumor-Specific Imaging and Precise Chemotherapy. ACS Appl Mater Interfaces 2021;13:59708-19. [PMID: 34879654 DOI: 10.1021/acsami.1c19058] [Reference Citation Analysis]
28 Clemente SM, Martínez-Costa OH, Monsalve M, Samhan-Arias AK. Targeting Lipid Peroxidation for Cancer Treatment. Molecules 2020;25:E5144. [PMID: 33167334 DOI: 10.3390/molecules25215144] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
29 Lundberg AP, Boudreau MW, Selting KA, Chatkewitz LE, Samuelson J, Francis JM, Parkinson EI, Barger AM, Hergenrother PJ, Fan TM. Utilizing feline oral squamous cell carcinoma patients to develop NQO1-targeted therapy. Neoplasia 2021;23:811-22. [PMID: 34246985 DOI: 10.1016/j.neo.2021.06.008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Yang Y, Zheng J, Wang M, Zhang J, Tian T, Wang Z, Yuan S, Liu L, Zhu P, Gu F, Fu S, Shan Y, Pan Z, Zhou W. NQO1 promotes an aggressive phenotype in hepatocellular carcinoma via amplifying ERK-NRF2 signaling. Cancer Sci 2021;112:641-54. [PMID: 33222332 DOI: 10.1111/cas.14744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
31 Yang Z, He J, Lu A, Hou T, Cao D. Application of Negative Design To Design a More Desirable Virtual Screening Library. J Med Chem 2020;63:4411-29. [DOI: 10.1021/acs.jmedchem.9b01476] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
32 Dai F, Du YT, Zheng YL, Zhou B. A promising redox cycle-based strategy for designing a catechol-type diphenylbutadiene as a potent prooxidative anti-melanoma agent. Free Radic Biol Med 2019;130:489-98. [PMID: 30458279 DOI: 10.1016/j.freeradbiomed.2018.11.018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 Senger MR, Fraga CA, Dantas RF, Silva FP Jr. Filtering promiscuous compounds in early drug discovery: is it a good idea? Drug Discov Today 2016;21:868-72. [PMID: 26880580 DOI: 10.1016/j.drudis.2016.02.004] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 8.8] [Reference Citation Analysis]
34 Yan D, Xu X, Ren C, Chen C, Luo J, Han C, Kong L. DT-diaphorase triggered theranostic nanoparticles induce the self-burst of reactive oxygen species for tumor diagnosis and treatment. Acta Biomater 2021;125:267-79. [PMID: 33652166 DOI: 10.1016/j.actbio.2021.02.033] [Reference Citation Analysis]
35 Xu S, Yao H, Pei L, Hu M, Li D, Qiu Y, Wang G, Wu L, Yao H, Zhu Z, Xu J. Design, synthesis, and biological evaluation of NAD(P)H: Quinone oxidoreductase (NQO1)-targeted oridonin prodrugs possessing indolequinone moiety for hypoxia-selective activation. European Journal of Medicinal Chemistry 2017;132:310-21. [DOI: 10.1016/j.ejmech.2017.03.055] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
36 Best QA, Prasai B, Rouillere A, Johnson AE, Mccarley RL. Efficacious fluorescence turn-on probe for high-contrast imaging of human cells overexpressing quinone reductase activity. Chem Commun 2017;53:783-6. [DOI: 10.1039/c6cc08306d] [Cited by in Crossref: 18] [Cited by in F6Publishing: 2] [Article Influence: 3.6] [Reference Citation Analysis]
37 Ouyang J, Sun L, Zeng F, Wu S. Biomarker-activatable probes based on smart AIEgens for fluorescence and optoacoustic imaging. Coordination Chemistry Reviews 2022;458:214438. [DOI: 10.1016/j.ccr.2022.214438] [Reference Citation Analysis]
38 Robertson H, Dinkova-Kostova AT, Hayes JD. NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Cancers (Basel) 2020;12:E3609. [PMID: 33276631 DOI: 10.3390/cancers12123609] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
39 Zhang X, Bian J, Li X, Wu X, Dong Y, You Q. 2-Substituted 3,7,8-trimethylnaphtho[1,2- b ]furan-4,5-diones as specific L-shaped NQO1-mediated redox modulators for the treatment of non-small cell lung cancer. European Journal of Medicinal Chemistry 2017;138:616-29. [DOI: 10.1016/j.ejmech.2017.06.028] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
40 Gong Q, Yu Q, Wang N, Hu J, Wang P, Yang F, Li T, You Q, Li X, Zhang X. Application of cation-π interactions in enzyme-substrate binding: Design, synthesis, biological evaluation, and molecular dynamics insights of novel hydrophilic substrates for NQO1. Eur J Med Chem 2021;221:113515. [PMID: 33984806 DOI: 10.1016/j.ejmech.2021.113515] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Löcken H, Clamor C, Müller K. Napabucasin and Related Heterocycle-Fused Naphthoquinones as STAT3 Inhibitors with Antiproliferative Activity against Cancer Cells. J Nat Prod 2018;81:1636-44. [DOI: 10.1021/acs.jnatprod.8b00247] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
42 Begunov RS, Sokolov AA, Filimonov SI. Synthesis of Quinone Derivatives of Benzannelated Heterocycles with Bridgehead Nitrogen. Russ J Org Chem 2020;56:1383-91. [DOI: 10.1134/s1070428020080084] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Bolton JL, Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem Res Toxicol 2017;30:13-37. [PMID: 27617882 DOI: 10.1021/acs.chemrestox.6b00256] [Cited by in Crossref: 147] [Cited by in F6Publishing: 115] [Article Influence: 24.5] [Reference Citation Analysis]
44 Hanafi M, Chen X, Neamati N. Discovery of a Napabucasin PROTAC as an Effective Degrader of the E3 Ligase ZFP91. J Med Chem 2021;64:1626-48. [PMID: 33506674 DOI: 10.1021/acs.jmedchem.0c01897] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
45 Janin M, Ortiz-Barahona V, de Moura MC, Martínez-Cardús A, Llinàs-Arias P, Soler M, Nachmani D, Pelletier J, Schumann U, Calleja-Cervantes ME, Moran S, Guil S, Bueno-Costa A, Piñeyro D, Perez-Salvia M, Rosselló-Tortella M, Piqué L, Bech-Serra JJ, De La Torre C, Vidal A, Martínez-Iniesta M, Martín-Tejera JF, Villanueva A, Arias A, Cuartas I, Aransay AM, La Madrid AM, Carcaboso AM, Santa-Maria V, Mora J, Fernandez AF, Fraga MF, Aldecoa I, Pedrosa L, Graus F, Vidal N, Martínez-Soler F, Tortosa A, Carrato C, Balañá C, Boudreau MW, Hergenrother PJ, Kötter P, Entian KD, Hench J, Frank S, Mansouri S, Zadeh G, Dans PD, Orozco M, Thomas G, Blanco S, Seoane J, Preiss T, Pandolfi PP, Esteller M. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol 2019;138:1053-74. [PMID: 31428936 DOI: 10.1007/s00401-019-02062-4] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 12.3] [Reference Citation Analysis]
46 Punganuru SR, Madala HR, Arutla V, Zhang R, Srivenugopal KS. Characterization of a highly specific NQO1-activated near-infrared fluorescent probe and its application for in vivo tumor imaging. Sci Rep 2019;9:8577. [PMID: 31189950 DOI: 10.1038/s41598-019-44111-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
47 Smolyaninov IV, Burmistrova DA, Arsenyev MV, Almyasheva NR, Ivanova ES, Smolyaninova SA, Pashchenko KP, Poddel'sky AI, Berberova NT. Catechol‐ and Phenol‐Containing Thio‐Schiff Bases: Synthesis, Electrochemical Properties and Biological Evaluation. ChemistrySelect 2021;6:10609-18. [DOI: 10.1002/slct.202102246] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Chen J, Zhang S, Zhang S, Gao S, Wang J, Lei D, Du P, Xu Z, Zhu C, Sun H. Mesoporous Silica Nanoparticle-Based Combination of NQO1 Inhibitor and 5-Fluorouracil for Potent Antitumor Effect Against Head and Neck Squamous Cell Carcinoma (HNSCC). Nanoscale Res Lett 2019;14:387. [PMID: 31858276 DOI: 10.1186/s11671-019-3224-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
49 Lundberg AP, Francis JM, Pajak M, Parkinson EI, Wycislo KL, Rosol TJ, Brown ME, London CA, Dirikolu L, Hergenrother PJ, Fan TM. Pharmacokinetics and derivation of an anticancer dosing regimen for the novel anti-cancer agent isobutyl-deoxynyboquinone (IB-DNQ), a NQO1 bioactivatable molecule, in the domestic felid species. Invest New Drugs 2017;35:134-44. [PMID: 27975234 DOI: 10.1007/s10637-016-0414-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
50 Chhour M, Perio P, Gayon R, Ternet-Fontebasso H, Ferry G, Nepveu F, Boutin JA, Sudor J, Reybier K. Association of NQO2 With UDP-Glucuronosyltransferases Reduces Menadione Toxicity in Neuroblastoma Cells. Front Pharmacol 2021;12:660641. [PMID: 34040527 DOI: 10.3389/fphar.2021.660641] [Reference Citation Analysis]
51 Gong Q, Yang F, Hu J, Li T, Wang P, Li X, Zhang X. Rational designed highly sensitive NQO1-activated near-infrared fluorescent probe combined with NQO1 substrates in vivo: An innovative strategy for NQO1-overexpressing cancer theranostics. Eur J Med Chem 2021;224:113707. [PMID: 34303080 DOI: 10.1016/j.ejmech.2021.113707] [Reference Citation Analysis]
52 Lee HY, Parkinson EI, Granchi C, Paterni I, Panigrahy D, Seth P, Minutolo F, Hergenrother PJ. Reactive Oxygen Species Synergize To Potently and Selectively Induce Cancer Cell Death. ACS Chem Biol 2017;12:1416-24. [PMID: 28345875 DOI: 10.1021/acschembio.7b00015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
53 Sherer C, Prabhu S, Adams D, Hayes J, Rowther F, Tolaymat I, Warr T, Snape TJ. Towards identifying potent new hits for glioblastoma. Medchemcomm 2018;9:1850-61. [PMID: 30568753 DOI: 10.1039/c8md00436f] [Reference Citation Analysis]
54 Zhang X, Li X, Li Z, Wu X, Wu Y, You Q, Zhang X. An NAD(P)H:Quinone Oxidoreductase 1 Responsive and Self-Immolative Prodrug of 5-Fluorouracil for Safe and Effective Cancer Therapy. Org Lett 2018;20:3635-8. [PMID: 29847952 DOI: 10.1021/acs.orglett.8b01409] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
55 Bahia SBBB, Reis WJ, Jardim GAM, Souto FT, de Simone CA, Gatto CC, Menna-barreto RFS, de Castro SL, Cavalcanti BC, Pessoa C, Araujo MH, da Silva Júnior EN. Molecular hybridization as a powerful tool towards multitarget quinoidal systems: synthesis, trypanocidal and antitumor activities of naphthoquinone-based 5-iodo-1,4-disubstituted-, 1,4- and 1,5-disubstituted-1,2,3-triazoles. Med Chem Commun 2016;7:1555-63. [DOI: 10.1039/c6md00216a] [Cited by in Crossref: 37] [Cited by in F6Publishing: 1] [Article Influence: 6.2] [Reference Citation Analysis]
56 Shen Z, Prasai B, Nakamura Y, Kobayashi H, Jackson MS, McCarley RL. A Near-Infrared, Wavelength-Shiftable, Turn-on Fluorescent Probe for the Detection and Imaging of Cancer Tumor Cells. ACS Chem Biol 2017;12:1121-32. [PMID: 28240865 DOI: 10.1021/acschembio.6b01094] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 8.2] [Reference Citation Analysis]