BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Njagi J, Ball M, Best M, Wallace KN, Andreescu S. Electrochemical quantification of serotonin in the live embryonic zebrafish intestine. Anal Chem 2010;82:1822-30. [PMID: 20148518 DOI: 10.1021/ac902465v] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Khoshnevisan K, Baharifar H, Torabi F, Sadeghi Afjeh M, Maleki H, Honarvarfard E, Mohammadi H, Sajjadi-Jazi SM, Mahmoudi-Kohan S, Faridbod F, Larijani B, Saadat F, Faridi Majidi R, Khorramizadeh MR. Serotonin level as a potent diabetes biomarker based on electrochemical sensing: a new approach in a zebra fish model. Anal Bioanal Chem 2021;413:1615-27. [PMID: 33501550 DOI: 10.1007/s00216-020-03122-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Airhart MJ, Lee DH, Wilson TD, Miller BE, Miller MN, Skalko RG, Monaco PJ. Adverse effects of serotonin depletion in developing zebrafish. Neurotoxicology and Teratology 2012;34:152-60. [DOI: 10.1016/j.ntt.2011.08.008] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
3 Basu S, Sachidanandan C. Zebrafish: a multifaceted tool for chemical biologists. Chem Rev 2013;113:7952-80. [PMID: 23819893 DOI: 10.1021/cr4000013] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.6] [Reference Citation Analysis]
4 McLaughlin N, Bielinski TM, Tressler CM, Barton E, Glunde K, Stumpo KA. Pneumatically Sprayed Gold Nanoparticles for Mass Spectrometry Imaging of Neurotransmitters. J Am Soc Mass Spectrom 2020;31:2452-61. [PMID: 32841002 DOI: 10.1021/jasms.0c00156] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
5 Ozel RE, Wallace KN, Andreescu S. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos. Anal Chim Acta. 2011;695:89-95. [PMID: 21601035 DOI: 10.1016/j.aca.2011.03.057] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 4.2] [Reference Citation Analysis]
6 Durairaj S, Sidhureddy B, Cirone J, Chen A. Nanomaterials-Based Electrochemical Sensors for In Vitro and In Vivo Analyses of Neurotransmitters. Applied Sciences 2018;8:1504. [DOI: 10.3390/app8091504] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
7 Mcdonald MD. An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2017;197:19-31. [DOI: 10.1016/j.cbpc.2017.03.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
8 Shepherd I, Eisen J. Development of the zebrafish enteric nervous system. Methods Cell Biol. 2011;101:143-160. [PMID: 21550442 DOI: 10.1016/b978-0-12-387036-0.00006-2] [Cited by in Crossref: 47] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
9 Andreescu D, Kirk KA, Narouei FH, Andreescu S. Electroanalytic Aspects of Single‐Entity Collision Methods for Bioanalytical and Environmental Applications. ChemElectroChem 2018;5:2920-36. [DOI: 10.1002/celc.201800722] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
10 Özel RE, Hayat A, Andreescu S. RECENT DEVELOPMENTS IN ELECTROCHEMICAL SENSORS FOR THE DETECTION OF NEUROTRANSMITTERS FOR APPLICATIONS IN BIOMEDICINE. Anal Lett 2015;48:1044-69. [PMID: 26973348 DOI: 10.1080/00032719.2014.976867] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
11 König D, Dagenais P, Senk A, Djonov V, Aegerter CM, Jaźwińska A. Distribution and Restoration of Serotonin-Immunoreactive Paraneuronal Cells During Caudal Fin Regeneration in Zebrafish. Front Mol Neurosci 2019;12:227. [PMID: 31616250 DOI: 10.3389/fnmol.2019.00227] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Ozel RE, Alkasir RS, Ray K, Wallace KN, Andreescu S. Comparative evaluation of intestinal nitric oxide in embryonic zebrafish exposed to metal oxide nanoparticles. Small 2013;9:4250-61. [PMID: 23873807 DOI: 10.1002/smll.201301087] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
13 Güell AG, Meadows KE, Unwin PR, Macpherson JV. Trace voltammetric detection of serotonin at carbon electrodes: comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes. Phys Chem Chem Phys 2010;12:10108. [DOI: 10.1039/c0cp00675k] [Cited by in Crossref: 66] [Cited by in F6Publishing: 53] [Article Influence: 6.0] [Reference Citation Analysis]
14 Hirabayashi M, Huynh NU, Witsell S, Perez A, Sandoval L, Yamada N, Kassegne S. In-Vitro Real-Time Coupled Electrophysiological and Electrochemical Signals Detection with Glassy Carbon Microelectrodes. J Electrochem Soc 2017;164:B3113-21. [DOI: 10.1149/2.0181705jes] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
15 Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017;89:314-41. [PMID: 28105819 DOI: 10.1021/acs.analchem.6b04278] [Cited by in Crossref: 75] [Cited by in F6Publishing: 59] [Article Influence: 15.0] [Reference Citation Analysis]
16 Khoshnevisan K, Maleki H, Honarvarfard E, Baharifar H, Gholami M, Faridbod F, Larijani B, Faridi Majidi R, Khorramizadeh MR. Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review. Mikrochim Acta 2019;186:49. [PMID: 30610391 DOI: 10.1007/s00604-018-3069-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
17 Bellot M, Bartolomé H, Faria M, Gómez-Canela C, Raldúa D. Differential Modulation of the Central and Peripheral Monoaminergic Neurochemicals by Deprenyl in Zebrafish Larvae. Toxics 2021;9:116. [PMID: 34071101 DOI: 10.3390/toxics9060116] [Reference Citation Analysis]
18 Tan C, Robbins EM, Wu B, Cui XT. Recent Advances in In Vivo Neurochemical Monitoring. Micromachines (Basel) 2021;12:208. [PMID: 33670703 DOI: 10.3390/mi12020208] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Yang X, Feng B, He X, Li F, Ding Y, Fei J. Carbon nanomaterial based electrochemical sensors for biogenic amines. Microchim Acta 2013;180:935-56. [DOI: 10.1007/s00604-013-1015-6] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
20 Özel RE, Liu X, Alkasir RS, Andreescu S. Electrochemical methods for nanotoxicity assessment. TrAC Trends in Analytical Chemistry 2014;59:112-20. [DOI: 10.1016/j.trac.2014.04.006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
21 Mirzaei M, Sawan M. Microelectronics-based biosensors dedicated to the detection of neurotransmitters: a review. Sensors (Basel) 2014;14:17981-8008. [PMID: 25264957 DOI: 10.3390/s141017981] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.1] [Reference Citation Analysis]
22 Ozel RE, Wallace KN, Andreescu S. Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish. Environ Sci Nano 2014;2014:27-36. [PMID: 24639893 DOI: 10.1039/C3EN00001J] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
23 Shinde RB, Veerapandian M, Kaushik A, Manickam P. State-of-Art Bio-Assay Systems and Electrochemical Approaches for Nanotoxicity Assessment. Front Bioeng Biotechnol 2020;8:325. [PMID: 32411681 DOI: 10.3389/fbioe.2020.00325] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
24 Dumitrescu E, Wallace KN, Andreescu S. Real time electrochemical investigation of the release, distribution and modulation of nitric oxide in the intestine of individual zebrafish embryos. Nitric Oxide 2018;74:32-8. [DOI: 10.1016/j.niox.2018.01.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
25 Parolini M, Ghilardi A, De Felice B, Del Giacco L. Environmental concentration of fluoxetine disturbs larvae behavior and increases the defense response at molecular level in zebrafish (Danio rerio). Environ Sci Pollut Res Int 2019;26:34943-52. [PMID: 31659707 DOI: 10.1007/s11356-019-06619-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
26 Sharma S, Singh N, Tomar V, Chandra R. A review on electrochemical detection of serotonin based on surface modified electrodes. Biosensors and Bioelectronics 2018;107:76-93. [DOI: 10.1016/j.bios.2018.02.013] [Cited by in Crossref: 77] [Cited by in F6Publishing: 53] [Article Influence: 25.7] [Reference Citation Analysis]
27 Roach G, Heath Wallace R, Cameron A, Emrah Ozel R, Hongay CF, Baral R, Andreescu S, Wallace KN. Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility. Dev Biol 2013;376:171-86. [PMID: 23353550 DOI: 10.1016/j.ydbio.2013.01.013] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
28 Patel AN, Unwin PR, Macpherson JV. Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Phys Chem Chem Phys 2013;15:18085. [DOI: 10.1039/c3cp53513d] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
29 Fujii K, Nakajo K, Egashira Y, Yamamoto Y, Kitada K, Taniguchi K, Kawai M, Tomiyama H, Kawakami K, Uchiyama K, Ono F. Gastrointestinal Neurons Expressing HCN4 Regulate Retrograde Peristalsis. Cell Rep 2020;30:2879-2888.e3. [PMID: 32130893 DOI: 10.1016/j.celrep.2020.02.024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
30 Paredes-zúñiga S, Trost N, De la Paz JF, Alcayaga J, Allende ML. Behavioral effects of triadimefon in zebrafish are associated with alterations of the dopaminergic and serotonergic pathways. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019;92:118-26. [DOI: 10.1016/j.pnpbp.2018.12.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
31 Li YT, Tang LN, Ning Y, Shu Q, Liang FX, Wang H, Zhang GJ. In vivo Monitoring of Serotonin by Nanomaterial Functionalized Acupuncture Needle. Sci Rep 2016;6:28018. [PMID: 27301303 DOI: 10.1038/srep28018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
32 Liu X, Yu Y, Gu H, Zhou T, Wang L, Mei B, Shi G. Simultaneous determination of monoamines in rat brain with Pt/MWCNTs@Pdop hybrid nanocomposite using capillary electrophoresis- amperometric detection: CE and CEC. ELECTROPHORESIS 2013;34:935-43. [DOI: 10.1002/elps.201200071] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
33 Abbaspour A, Noori A. A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens Bioelectron 2011;26:4674-80. [PMID: 21715153 DOI: 10.1016/j.bios.2011.04.061] [Cited by in Crossref: 98] [Cited by in F6Publishing: 83] [Article Influence: 9.8] [Reference Citation Analysis]
34 Dumitrescu E, Andreescu S. Bioapplications of Electrochemical Sensors and Biosensors. Methods Enzymol 2017;589:301-50. [PMID: 28336068 DOI: 10.1016/bs.mie.2017.01.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]