BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pribil MM, Laptev GU, Karyakina EE, Karyakin AA. Noninvasive hypoxia monitor based on gene-free engineering of lactate oxidase for analysis of undiluted sweat. Anal Chem 2014;86:5215-9. [PMID: 24837858 DOI: 10.1021/ac501547u] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Lin KC, Muthukumar S, Prasad S. Flex-GO (Flexible graphene oxide) sensor for electrochemical monitoring lactate in low-volume passive perspired human sweat. Talanta 2020;214:120810. [PMID: 32278429 DOI: 10.1016/j.talanta.2020.120810] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
2 Karpova EV, Karyakina EE, Karyakin AA. Communication—Accessing Stability of Oxidase-Based Biosensors via Stabilizing the Advanced H 2 O 2 Transducer. J Electrochem Soc 2017;164:B3056-8. [DOI: 10.1149/2.0091705jes] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 2.6] [Reference Citation Analysis]
3 Soto RJ, Hall JR, Brown MD, Taylor JB, Schoenfisch MH. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal Chem 2017;89:276-99. [PMID: 28105839 DOI: 10.1021/acs.analchem.6b04251] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 6.7] [Reference Citation Analysis]
4 Ma H, Tian Y, Jiao A, Wang C, Zhang M, Zheng L, Li S, Chen M. Silk fibroin-decorated with tunable Au/Ag nanodendrites: A plastic near-infrared SERS substrate with periodic microstructures for ultra-sensitive monitoring of lactic acid in human sweat. Vibrational Spectroscopy 2022;118:103330. [DOI: 10.1016/j.vibspec.2021.103330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Komkova MA, Eliseev AA, Poyarkov AA, Daboss EV, Evdokimov PV, Eliseev AA, Karyakin AA. Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors. Biosens Bioelectron 2022;202:113970. [PMID: 35032921 DOI: 10.1016/j.bios.2022.113970] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Onor M, Gufoni S, Lomonaco T, Ghimenti S, Salvo P, Sorrentino F, Bramanti E. Potentiometric sensor for non invasive lactate determination in human sweat. Anal Chim Acta 2017;989:80-7. [PMID: 28915945 DOI: 10.1016/j.aca.2017.07.050] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 5.4] [Reference Citation Analysis]
7 Komkova MA, Pasquarelli A, Andreev EA, Galushin AA, Karyakin AA. Prussian Blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors. Electrochimica Acta 2020;339:135924. [DOI: 10.1016/j.electacta.2020.135924] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 10.5] [Reference Citation Analysis]
8 Karpova EV, Laptev AI, Andreev EA, Karyakina EE, Karyakin AA. Relationship Between Sweat and Blood Lactate Levels During Exhaustive Physical Exercise. ChemElectroChem 2019;7:191-4. [DOI: 10.1002/celc.201901703] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
9 Karyakina EE, Lukhnovich AV, Yashina EI, Statkus MA, Tsisin GI, Karyakin AA. Electrochemical Biosensor Powered by Pre-concentration: Improved Sensitivity and Selectivity towards Lactate. Electroanalysis 2016;28:2389-93. [DOI: 10.1002/elan.201600232] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
10 Karyakin AA. Glucose biosensors for clinical and personal use. Electrochemistry Communications 2021;125:106973. [DOI: 10.1016/j.elecom.2021.106973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
11 Zaryanov NV, Nikitina VN, Karpova EV, Karyakina EE, Karyakin AA. Nonenzymatic Sensor for Lactate Detection in Human Sweat. Anal Chem 2017;89:11198-202. [PMID: 29065687 DOI: 10.1021/acs.analchem.7b03662] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 9.2] [Reference Citation Analysis]
12 Yu Y, Zhai J, Xia Y, Dong S. Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis of perspiration and illuminance. Nanoscale 2017;9:11846-50. [DOI: 10.1039/c7nr04335j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 4.6] [Reference Citation Analysis]
13 Falk M, Psotta C, Cirovic S, Shleev S. Non-Invasive Electrochemical Biosensors Operating in Human Physiological Fluids. Sensors (Basel) 2020;20:E6352. [PMID: 33171750 DOI: 10.3390/s20216352] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
14 Vokhmyanina DV, Andreeva KD, Komkova MA, Karyakina EE, Karyakin AA. ‘Artificial peroxidase’ nanozyme – enzyme based lactate biosensor. Talanta 2020;208:120393. [DOI: 10.1016/j.talanta.2019.120393] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
15 Saldanha DJ, Cai A, Dorval Courchesne NM. The Evolving Role of Proteins in Wearable Sweat Biosensors. ACS Biomater Sci Eng 2021. [PMID: 34491052 DOI: 10.1021/acsbiomaterials.1c00699] [Reference Citation Analysis]
16 Zhang J, Xiang Y, Wang M, Basu A, Lu Y. Dose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step. Angew Chem 2016;128:742-6. [DOI: 10.1002/ange.201507563] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
17 Nikitina VN, Zaryanov NV, Kochetkov IR, Karyakina EE, Yatsimirsky AK, Karyakin AA. Molecular imprinting of boronate functionalized polyaniline for enzyme-free selective detection of saccharides and hydroxy acids. Sensors and Actuators B: Chemical 2017;246:428-33. [DOI: 10.1016/j.snb.2017.02.073] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
18 Daboss EV, Tikhonov DV, Shcherbacheva EV, Karyakin AA. Ultrastable Lactate Biosensor Linearly Responding in Whole Sweat for Noninvasive Monitoring of Hypoxia. Anal Chem 2022. [PMID: 35687799 DOI: 10.1021/acs.analchem.2c02208] [Reference Citation Analysis]
19 Karpova EV, Karyakin AA. Noninvasive monitoring of diabetes and hypoxia by wearable flow-through biosensors. Current Opinion in Electrochemistry 2020;23:16-20. [DOI: 10.1016/j.coelec.2020.02.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
20 Zhang J, Xiang Y, Wang M, Basu A, Lu Y. Dose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step. Angew Chem Int Ed Engl 2016;55:732-6. [PMID: 26593219 DOI: 10.1002/anie.201507563] [Cited by in Crossref: 62] [Cited by in F6Publishing: 48] [Article Influence: 8.9] [Reference Citation Analysis]
21 Aranyosi AJ, Model JB, Zhang MZ, Lee SP, Leech A, Li W, Seib MS, Chen S, Reny N, Wallace J, Shin MH, Bandodkar AJ, Choi J, Paller AS, Rogers JA, Xu S, Ghaffari R. Rapid Capture and Extraction of Sweat for Regional Rate and Cytokine Composition Analysis Using a Wearable Soft Microfluidic System. Journal of Investigative Dermatology 2021;141:433-437.e3. [DOI: 10.1016/j.jid.2020.05.107] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
22 Karpova EV, Shcherbacheva EV, Galushin AA, Vokhmyanina DV, Karyakina EE, Karyakin AA. Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor. Anal Chem 2019;91:3778-83. [DOI: 10.1021/acs.analchem.8b05928] [Cited by in Crossref: 58] [Cited by in F6Publishing: 39] [Article Influence: 19.3] [Reference Citation Analysis]
23 Choi YM, Lim H, Lee HN, Park YM, Park JS, Kim HJ. Selective Nonenzymatic Amperometric Detection of Lactic Acid in Human Sweat Utilizing a Multi-Walled Carbon Nanotube (MWCNT)-Polypyrrole Core-Shell Nanowire. Biosensors (Basel) 2020;10:E111. [PMID: 32872302 DOI: 10.3390/bios10090111] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
24 Dei M, Aymerich J, Piotto M, Bruschi P, del Campo F, Serra-graells F. CMOS Interfaces for Internet-of-Wearables Electrochemical Sensors: Trends and Challenges. Electronics 2019;8:150. [DOI: 10.3390/electronics8020150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Xuan X, Pérez-Ràfols C, Chen C, Cuartero M, Crespo GA. Lactate Biosensing for Reliable On-Body Sweat Analysis. ACS Sens 2021;6:2763-71. [PMID: 34228919 DOI: 10.1021/acssensors.1c01009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
26 Manna B, Retna Raj C. Covalent functionalization and electrochemical tuning of reduced graphene oxide for the bioelectrocatalytic sensing of serum lactate. J Mater Chem B 2016;4:4585-93. [DOI: 10.1039/c6tb00721j] [Cited by in Crossref: 18] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
27 Karyakin AA. Advances of Prussian blue and its analogues in (bio)sensors. Current Opinion in Electrochemistry 2017;5:92-8. [DOI: 10.1016/j.coelec.2017.07.006] [Cited by in Crossref: 58] [Cited by in F6Publishing: 27] [Article Influence: 11.6] [Reference Citation Analysis]
28 Zhou J, Men D, Zhang X. Progress in wearable sweat sensors and their applications. Chinese Journal of Analytical Chemistry 2022;50:87-96. [DOI: 10.1016/j.cjac.2021.11.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Tricoli A, Nasiri N, De S. Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Adv Funct Mater 2017;27:1605271. [DOI: 10.1002/adfm.201605271] [Cited by in Crossref: 183] [Cited by in F6Publishing: 109] [Article Influence: 36.6] [Reference Citation Analysis]
30 Hiraka K, Kojima K, Lin C, Tsugawa W, Asano R, La Belle JT, Sode K. Minimizing the effects of oxygen interference on l -lactate sensors by a single amino acid mutation in Aerococcus viridans l -lactate oxidase. Biosensors and Bioelectronics 2018;103:163-70. [DOI: 10.1016/j.bios.2017.12.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
31 Hickey DP, Reid RC, Milton RD, Minteer SD. A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI. Biosens Bioelectron 2016;77:26-31. [PMID: 26385734 DOI: 10.1016/j.bios.2015.09.013] [Cited by in Crossref: 105] [Cited by in F6Publishing: 83] [Article Influence: 15.0] [Reference Citation Analysis]
32 Minami T, Sato T, Minamiki T, Fukuda K, Kumaki D, Tokito S. A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosensors and Bioelectronics 2015;74:45-8. [DOI: 10.1016/j.bios.2015.06.002] [Cited by in Crossref: 70] [Cited by in F6Publishing: 44] [Article Influence: 10.0] [Reference Citation Analysis]
33 Karpova EV, Karyakina EE, Karyakin AA. Wearable non-invasive monitors of diabetes and hypoxia through continuous analysis of sweat. Talanta 2020;215:120922. [DOI: 10.1016/j.talanta.2020.120922] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
34 Arduini F, Micheli L, Moscone D, Palleschi G, Piermarini S, Ricci F, Volpe G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends in Analytical Chemistry 2016;79:114-26. [DOI: 10.1016/j.trac.2016.01.032] [Cited by in Crossref: 191] [Cited by in F6Publishing: 107] [Article Influence: 31.8] [Reference Citation Analysis]
35 Komkova MA, Andreev EA, Ibragimova OA, Karyakin AA. Prussian Blue based flow-through (bio)sensors in power generation mode: New horizons for electrochemical analyzers. Sensors and Actuators B: Chemical 2019;292:284-8. [DOI: 10.1016/j.snb.2019.04.134] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
36 Saha T, Fang J, Mukherjee S, Knisely CT, Dickey MD, Velev OD. Osmotically Enabled Wearable Patch for Sweat Harvesting and Lactate Quantification. Micromachines (Basel) 2021;12:1513. [PMID: 34945363 DOI: 10.3390/mi12121513] [Reference Citation Analysis]