BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wörle K, Seichter F, Wilk A, Armacost C, Day T, Godejohann M, Wachter U, Vogt J, Radermacher P, Mizaikoff B. Breath analysis with broadly tunable quantum cascade lasers. Anal Chem 2013;85:2697-702. [PMID: 23320383 DOI: 10.1021/ac3030703] [Cited by in Crossref: 74] [Cited by in F6Publishing: 48] [Article Influence: 8.2] [Reference Citation Analysis]
Number Citing Articles
1 [DOI: 10.1117/12.2210913] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
2 Abramov PI, Kuznetsov EV, Skvortsov LA, Skvortsova MI. Quantum-Cascade Lasers in Medicine and Biology (Review). J Appl Spectrosc 2019;86:1-26. [DOI: 10.1007/s10812-019-00775-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
3 Seichter F, Vogt JA, Wachter U, Radermacher P, Mizaikoff B. Strategies for 13C enrichment calculation in Fourier-transform infrared CO2 spectra containing spectral overlapping and nonlinear abundance-amount relations utilizing response surface fits. Analytica Chimica Acta 2020;1095:48-60. [DOI: 10.1016/j.aca.2019.10.038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Zhou T, Wu T, Wu Q, Chen W, Wu M, Ye C, He X. Real-Time Monitoring of 13C- and 18O-Isotopes of Human Breath CO2 Using a Mid-Infrared Hollow Waveguide Gas Sensor. Anal Chem 2020;92:12943-9. [PMID: 32864957 DOI: 10.1021/acs.analchem.0c01586] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Brumfield B, Taubman M, Phillips M. Rapid and Sensitive Quantification of Isotopic Mixtures Using a Rapidly-Swept External Cavity Quantum Cascade Laser. Photonics 2016;3:33. [DOI: 10.3390/photonics3020033] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
6 Perez-guaita D, Wilk A, Kuligowski J, Quintás G, de la Guardia M, Mizaikoff B. Improving the performance of hollow waveguide-based infrared gas sensors via tailored chemometrics. Anal Bioanal Chem 2013;405:8223-32. [DOI: 10.1007/s00216-013-7230-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
7 Bai Y, Zhang D, Li C, Liu C, Cheng JX. Bond-Selective Imaging of Cells by Mid-Infrared Photothermal Microscopy in High Wavenumber Region. J Phys Chem B 2017;121:10249-55. [PMID: 29035533 DOI: 10.1021/acs.jpcb.7b09570] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
8 Cheng J, Shao J, Ye Y, Zhao Y, Huang C, Wang L, Li M. Microfluidic Preconcentration Chip with Self-Assembled Chemical Modified Surface for Trace Carbonyl Compounds Detection. Sensors (Basel) 2018;18:E4402. [PMID: 30551558 DOI: 10.3390/s18124402] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
9 Du Z, Zhang S, Li J, Gao N, Tong K. Mid-Infrared Tunable Laser-Based Broadband Fingerprint Absorption Spectroscopy for Trace Gas Sensing: A Review. Applied Sciences 2019;9:338. [DOI: 10.3390/app9020338] [Cited by in Crossref: 27] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
10 Zaharov VV, Farahi RH, Snyder PJ, Davison BH, Passian A. Karhunen-Loève treatment to remove noise and facilitate data analysis in sensing, spectroscopy and other applications. Analyst 2014;139:5927-35. [PMID: 25252650 DOI: 10.1039/c4an01300j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Schwaighofer A, Brandstetter M, Lendl B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev 2017;46:5903-24. [DOI: 10.1039/c7cs00403f] [Cited by in Crossref: 73] [Cited by in F6Publishing: 11] [Article Influence: 14.6] [Reference Citation Analysis]
12 Ostendorf R, Butschek L, Hugger S, Fuchs F, Yang Q, Jarvis J, Schilling C, Rattunde M, Merten A, Grahmann J, Boskovic D, Tybussek T, Rieblinger K, Wagner J. Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals. Photonics 2016;3:28. [DOI: 10.3390/photonics3020028] [Cited by in Crossref: 38] [Cited by in F6Publishing: 10] [Article Influence: 6.3] [Reference Citation Analysis]
13 Wallace MAG, Pleil JD. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal Chim Acta 2018;1024:18-38. [PMID: 29776545 DOI: 10.1016/j.aca.2018.01.069] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
14 Phillips MC, Taubman MS, Bernacki BE, Cannon BD, Stahl RD, Schiffern JT, Myers TL. Real-time trace gas sensing of fluorocarbons using a swept-wavelength external cavity quantum cascade laser. Analyst 2014;139:2047. [DOI: 10.1039/c3an01642k] [Cited by in Crossref: 42] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
15 Butschek L, Hugger S, Jarvis J. Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy. Opt Eng 2018;57:1. [DOI: 10.1117/1.oe.57.1.011010] [Cited by in Crossref: 10] [Article Influence: 2.0] [Reference Citation Analysis]
16 Zhou S, Liu N, Shen C, Zhang L, He T, Yu B, Li J. An adaptive Kalman filtering algorithm based on back-propagation (BP) neural network applied for simultaneously detection of exhaled CO and N2O. Spectrochim Acta A Mol Biomol Spectrosc 2019;223:117332. [PMID: 31288168 DOI: 10.1016/j.saa.2019.117332] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
17 [DOI: 10.1117/12.2082794] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
18 Wei S, Kulkarni P, Ashley K, Zheng L. Measurement of Crystalline Silica Aerosol Using Quantum Cascade Laser-Based Infrared Spectroscopy. Sci Rep 2017;7:13860. [PMID: 29066770 DOI: 10.1038/s41598-017-14363-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
19 Nikodem M. Laser-Based Trace Gas Detection inside Hollow-Core Fibers: A Review. Materials (Basel) 2020;13:E3983. [PMID: 32916799 DOI: 10.3390/ma13183983] [Reference Citation Analysis]
20 Zhou T, Wu T, Wu Q, Ye C, Hu R, Chen W, He X. Real-time measurement of CO2 isotopologue ratios in exhaled breath by a hollow waveguide based mid-infrared gas sensor. Opt Express 2020;28:10970-80. [PMID: 32403618 DOI: 10.1364/OE.385103] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
21 Patrizi B, Siciliani de Cumis M, Viciani S, D'Amato F. Dioxin and Related Compound Detection: Perspectives for Optical Monitoring. Int J Mol Sci 2019;20:E2671. [PMID: 31151286 DOI: 10.3390/ijms20112671] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
22 Adamu AI, Ozturk FE, Bayindir M. Binary coded identification of industrial chemical vapors with an optofluidic nose. Appl Opt 2016;55:10247-54. [PMID: 28059241 DOI: 10.1364/AO.55.010247] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
23 Abramov PI, Budarin AS, Kuznetsov EV, Skvortsov LA. Quantum-Cascade Lasers in Atmospheric Optical Communication Lines: Challenges and Prospects (Review). J Appl Spectrosc 2020;87:579-600. [DOI: 10.1007/s10812-020-01041-y] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Perez-Guaita D, Kokoric V, Wilk A, Garrigues S, Mizaikoff B. Towards the determination of isoprene in human breath using substrate-integrated hollow waveguide mid-infrared sensors. J Breath Res 2014;8:026003. [PMID: 24848160 DOI: 10.1088/1752-7155/8/2/026003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
25 Richard L, Ventrillard I, Chau G, Jaulin K, Kerstel E, Romanini D. Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis. Appl Phys B 2016;122. [DOI: 10.1007/s00340-016-6502-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Isensee K, Kröger-Lui N, Petrich W. Biomedical applications of mid-infrared quantum cascade lasers - a review. Analyst 2018;143:5888-911. [PMID: 30444222 DOI: 10.1039/c8an01306c] [Cited by in Crossref: 22] [Cited by in F6Publishing: 3] [Article Influence: 7.3] [Reference Citation Analysis]
27 Brumfield BE, Phillips MC. Quantitative isotopic measurements of gas-phase alcohol mixtures using a broadly tunable swept external cavity quantum cascade laser. Analyst 2017;142:2354-62. [DOI: 10.1039/c7an00223h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
28 Galán-Freyle NJ, Pacheco-Londoño LC, Román-Ospino AD, Hernandez-Rivera SP. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations. Appl Spectrosc 2016;70:1511-9. [PMID: 27558366 DOI: 10.1177/0003702816662609] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
29 Schädle T, Mizaikoff B. Mid-Infrared Waveguides: A Perspective. Appl Spectrosc 2016;70:1625-38. [DOI: 10.1177/0003702816659668] [Cited by in Crossref: 32] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
30 Ghorbani R, Schmidt FM. Real-time breath gas analysis of CO and CO2 using an EC-QCL. Appl Phys B 2017;123. [DOI: 10.1007/s00340-017-6715-x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
31 Jiang Y, Li L, Tian Z, Ye H, Zhao L, Yang RQ, Mishima TD, Santos MB, Johnson MB, Mansour K. Electrically widely tunable interband cascade lasers. Journal of Applied Physics 2014;115:113101. [DOI: 10.1063/1.4865941] [Cited by in Crossref: 19] [Cited by in F6Publishing: 2] [Article Influence: 2.4] [Reference Citation Analysis]
32 Perez-guaita D, Garrigues S, de la M, Guardia. Infrared-based quantification of clinical parameters. TrAC Trends in Analytical Chemistry 2014;62:93-105. [DOI: 10.1016/j.trac.2014.06.012] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
33 Wilk A, Carter JC, Chrisp M, Manuel AM, Mirkarimi P, Alameda JB, Mizaikoff B. Substrate-Integrated Hollow Waveguides: A New Level of Integration in Mid-Infrared Gas Sensing. Anal Chem 2013;85:11205-10. [DOI: 10.1021/ac402391m] [Cited by in Crossref: 63] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
34 Bird B, Baker MJ. Quantum Cascade Lasers in Biomedical Infrared Imaging. Trends in Biotechnology 2015;33:557-8. [DOI: 10.1016/j.tibtech.2015.07.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 2.9] [Reference Citation Analysis]
35 Robinson I, Butcher HL, Macleod NA, Weidmann D. Hollow waveguide integrated laser spectrometer for 13 CO 2 / 12 CO 2 analysis. Opt Express 2019;27:35670. [DOI: 10.1364/oe.27.035670] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
36 Jia Z, Wang L, Zhang J, Zhao Y, Liu C, Zhai S, Zhuo N, Liu J, Wang L, Liu S, Liu F, Wang Z. Phase-locked array of quantum cascade lasers with an intracavity spatial filter. Appl Phys Lett 2017;111:061108. [DOI: 10.1063/1.4990463] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
37 [DOI: 10.1117/12.2251915] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
38 Seichter F, Vogt J, Radermacher P, Mizaikoff B. Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo – Markov Chain sampling. Analytica Chimica Acta 2017;951:32-45. [DOI: 10.1016/j.aca.2016.11.025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
39 Heydari D, Bai Y, Bandyopadhyay N, Slivken S, Razeghi M. High brightness angled cavity quantum cascade lasers. Appl Phys Lett 2015;106:091105. [DOI: 10.1063/1.4914477] [Cited by in Crossref: 42] [Article Influence: 6.0] [Reference Citation Analysis]
40 Tütüncü E, Nägele M, Becker S, Fischer M, Koeth J, Wolf C, Köstler S, Ribitsch V, Teuber A, Gröger M, Kress S, Wepler M, Wachter U, Vogt J, Radermacher P, Mizaikoff B. Advanced Photonic Sensors Based on Interband Cascade Lasers for Real-Time Mouse Breath Analysis. ACS Sens 2018;3:1743-9. [DOI: 10.1021/acssensors.8b00477] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
41 Brumfield BE, Taubman MS, Suter JD, Phillips MC. Characterization of a swept external cavity quantum cascade laser for rapid broadband spectroscopy and sensing. Opt Express 2015;23:25553-69. [PMID: 26480072 DOI: 10.1364/OE.23.025553] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
42 Wang L, Zhang J, Jia Z, Zhao Y, Liu C, Liu Y, Zhai S, Ning Z, Xu X, Liu F. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity. Opt Express 2016;24:30275-81. [PMID: 28059303 DOI: 10.1364/OE.24.030275] [Cited by in Crossref: 15] [Article Influence: 2.5] [Reference Citation Analysis]
43 Yoon Y, Breshike CJ, Kendziora CA, Furstenberg R, Andrew McGill R. Simultaneous real-time spectroscopy using a broadband IR laser source. Opt Express 2021;29:8902-13. [PMID: 33820331 DOI: 10.1364/OE.419262] [Reference Citation Analysis]
44 Hinkov B, Hayden J, Szedlak R, Martin-Mateos P, Jerez B, Acedo P, Strasser G, Lendl B. High frequency modulation and (quasi) single-sideband emission of mid-infrared ring and ridge quantum cascade lasers. Opt Express 2019;27:14716-24. [PMID: 31163916 DOI: 10.1364/OE.27.014716] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
45 Tütüncü E, Kokoric V, Szedlak R, Macfarland D, Zederbauer T, Detz H, Andrews AM, Schrenk W, Strasser G, Mizaikoff B. Advanced gas sensors based on substrate-integrated hollow waveguides and dual-color ring quantum cascade lasers. Analyst 2016;141:6202-7. [DOI: 10.1039/c6an01130f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
46 Zhang L, Tian G, Li J, Yu B. Applications of absorption spectroscopy using quantum cascade lasers. Appl Spectrosc 2014;68:1095-107. [PMID: 25239063 DOI: 10.1366/14-00001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 22] [Article Influence: 6.9] [Reference Citation Analysis]
47 Mizaikoff B. Waveguide-enhanced mid-infrared chem/bio sensors. Chem Soc Rev 2013;42:8683-99. [PMID: 23995692 DOI: 10.1039/c3cs60173k] [Cited by in Crossref: 104] [Cited by in F6Publishing: 64] [Article Influence: 13.0] [Reference Citation Analysis]
48 Tütüncü E, Mizaikoff B. Cascade laser sensing concepts for advanced breath diagnostics. Anal Bioanal Chem 2019;411:1679-86. [PMID: 30565171 DOI: 10.1007/s00216-018-1509-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
49 Turner C. Techniques and issues in breath and clinical sample headspace analysis for disease diagnosis. Bioanalysis 2016;8:677-90. [PMID: 26978667 DOI: 10.4155/bio.16.22] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
50 Glöckler J, Jaeschke C, Kocaöz Y, Kokoric V, Tütüncü E, Mitrovics J, Mizaikoff B. iHWG-MOX: A Hybrid Breath Analysis System via the Combination of Substrate-Integrated Hollow Waveguide Infrared Spectroscopy with Metal Oxide Gas Sensors. ACS Sens 2020;5:1033-9. [DOI: 10.1021/acssensors.9b02554] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
51 da Silveira Petruci JF, Fortes PR, Kokoric V, Wilk A, Raimundo IM, Cardoso AA, Mizaikoff B. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors. Sci Rep 2013;3:3174. [PMID: 24213678 DOI: 10.1038/srep03174] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
52 Kokoric V, Widmann D, Wittmann M, Behm RJ, Mizaikoff B. Infrared spectroscopy via substrate-integrated hollow waveguides: a powerful tool in catalysis research. Analyst 2016;141:5990-5. [DOI: 10.1039/c6an01534d] [Cited by in Crossref: 11] [Article Influence: 1.8] [Reference Citation Analysis]
53 Petruci JF, Fortes PR, Kokoric V, Wilk A, Raimundo IM Jr, Cardoso AA, Mizaikoff B. Monitoring of hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time. Analyst 2014;139:198-203. [PMID: 24256718 DOI: 10.1039/c3an01793a] [Cited by in Crossref: 53] [Cited by in F6Publishing: 8] [Article Influence: 5.9] [Reference Citation Analysis]
54 Tütüncü E, Kokoric V, Wilk A, Seichter F, Schmid M, Hunt WE, Manuel AM, Mirkarimi P, Alameda JB, Carter JC, Mizaikoff B. Fiber-Coupled Substrate-Integrated Hollow Waveguides: An Innovative Approach to Mid-infrared Remote Gas Sensors. ACS Sens 2017;2:1287-93. [PMID: 28792208 DOI: 10.1021/acssensors.7b00253] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]