BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Teotia RS, Kalita D, Singh AK, Verma SK, Kadam SS, Bellare JR. Bifunctional Polysulfone-Chitosan Composite Hollow Fiber Membrane for Bioartificial Liver. ACS Biomater Sci Eng 2015;1:372-81. [DOI: 10.1021/ab500061j] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Liu R, Wang Y, Ge X, Yu P, Liu H, Wang M, Lu W, Fu Q. Polydopamine/polyethyleneimine complex adhered to micrometer-sized magnetic carbon fibers for high-efficiency hemoperfusion. Journal of Biomaterials Science, Polymer Edition 2017;28:1444-68. [DOI: 10.1080/09205063.2017.1330242] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
2 Verma SK, Modi A, Bellare J. Three-dimensional multiscale fiber matrices: development and characterization for increased HepG2 functional maintenance for bio-artificial liver application. Biomater Sci 2018;6:280-91. [DOI: 10.1039/c7bm00963a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
3 da Silva Morais A, Oliveira JM, Reis RL. Biomaterials and Microfluidics for Liver Models. In: Oliveira JM, Reis RL, editors. Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models. Cham: Springer International Publishing; 2020. pp. 65-86. [DOI: 10.1007/978-3-030-36588-2_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020;9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
5 Aydemir Sezer U, Ozturk K, Aru B, Yanıkkaya Demirel G, Sezer S. A design achieved by coaxial electrospinning of polysulfone and sulfonated polysulfone as a core-shell structure to optimize mechanical strength and hemocompatibility. Surfaces and Interfaces 2018;10:176-87. [DOI: 10.1016/j.surfin.2017.10.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Mishra SK, Teotia AK, Kumar A, Kannan S. Mechanically tuned nanocomposite coating on titanium metal with integrated properties of biofilm inhibition, cell proliferation, and sustained drug delivery. Nanomedicine 2017;13:23-35. [PMID: 27558354 DOI: 10.1016/j.nano.2016.08.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
7 Maalige R N, Aruchamy K, Polishetti V, Halakarni M, Mahto A, Mondal D, Sanna Kotrappanavar N. Restructuring thin film composite membrane interfaces using biopolymer as a sustainable alternative to prevent organic fouling. Carbohydr Polym 2021;254:117297. [PMID: 33357865 DOI: 10.1016/j.carbpol.2020.117297] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Verma SK, Modi A, Singh AK, Teotia R, Kadam S, Bellare J. Functionally coated polyethersulfone hollow fiber membranes: A substrate for enhanced HepG2/C3A functions. Colloids and Surfaces B: Biointerfaces 2018;164:358-69. [DOI: 10.1016/j.colsurfb.2018.01.038] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
9 Modi A, Verma SK, Bellare J. Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) doping improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes. Journal of Colloid and Interface Science 2017;504:86-100. [DOI: 10.1016/j.jcis.2017.05.035] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
10 Xiong Z, Liu F, Lin H, Li J, Wang Y. Covalent Bonding of Heparin on the Crystallized Poly(lactic acid) (PLA) Membrane to Improve Hemocompability via Surface Cross-Linking and Glycidyl Ether Reaction. ACS Biomater Sci Eng 2016;2:2207-16. [DOI: 10.1021/acsbiomaterials.6b00413] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
11 Bonalumi F, Crua C, Savina IN, Davies N, Habstesion A, Santini M, Fest-Santini S, Sandeman S. Bioengineering a cryogel-derived bioartificial liver using particle image velocimetry defined fluid dynamics. Mater Sci Eng C Mater Biol Appl 2021;123:111983. [PMID: 33812611 DOI: 10.1016/j.msec.2021.111983] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Sikorska W, Milner-Krawczyk M, Wasyłeczko M, Wojciechowski C, Chwojnowski A. Biodegradation Process of PSF-PUR Blend Hollow Fiber Membranes Using Escherichia coli Bacteria-Evaluation of Changes in Properties and Porosity. Polymers (Basel) 2021;13:1311. [PMID: 33923596 DOI: 10.3390/polym13081311] [Reference Citation Analysis]
13 Lusiana RA, Sangkota VDA, Sasongko NA, Gunawan G, Wijaya AR, Santosa SJ, Siswanta D, Mudasir M, Abidin MNZ, Mansur S, Othman MHD. Permeability improvement of polyethersulfone-polietylene glycol (PEG-PES) flat sheet type membranes by tripolyphosphate-crosslinked chitosan (TPP-CS) coating. International Journal of Biological Macromolecules 2020;152:633-44. [DOI: 10.1016/j.ijbiomac.2020.02.290] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
14 Mishra SK, Raveendran S, Ferreira JMF, Kannan S. In Situ Impregnation of Silver Nanoclusters in Microporous Chitosan-PEG Membranes as an Antibacterial and Drug Delivery Percutaneous Device. Langmuir 2016;32:10305-16. [DOI: 10.1021/acs.langmuir.6b02844] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
15 Liang H, Sheng F, Zhou B, Pei Y, Li B, Li J. Phosphoprotein/chitosan electrospun nanofibrous scaffold for biomineralization. Int J Biol Macromol 2017;102:218-24. [PMID: 28392386 DOI: 10.1016/j.ijbiomac.2017.04.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
16 Das P, Remigy J, Lahitte J, van der Meer AD, Garmy-susini B, Coetsier C, Desclaux S, Bacchin P. Development of double porous poly (ε - caprolactone)/chitosan polymer as tissue engineering scaffold. Materials Science and Engineering: C 2020;107:110257. [DOI: 10.1016/j.msec.2019.110257] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
17 Verma SK, Modi A, Bellare J. Polyethersulfone-carbon nanotubes composite hollow fiber membranes with improved biocompatibility for bioartificial liver. Colloids and Surfaces B: Biointerfaces 2019;181:890-5. [DOI: 10.1016/j.colsurfb.2019.06.051] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
18 Tian Y, Wang Z, Wang L. Hollow fibers: from fabrication to applications. Chem Commun (Camb) 2021;57:9166-77. [PMID: 34519322 DOI: 10.1039/d1cc02991f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Modi A, Verma SK, Bellare J. Extracellular matrix-coated polyethersulfone-TPGS hollow fiber membranes showing improved biocompatibility and uremic toxins removal for bioartificial kidney application. Colloids Surf B Biointerfaces 2018;167:457-67. [PMID: 29723817 DOI: 10.1016/j.colsurfb.2018.04.043] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
20 Modi A, Verma SK, Bellare J. Hydrophilic ZIF-8 decorated GO nanosheets improve biocompatibility and separation performance of polyethersulfone hollow fiber membranes: A potential membrane material for bioartificial liver application. Materials Science and Engineering: C 2018;91:524-40. [DOI: 10.1016/j.msec.2018.05.051] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
21 Das P, van der Meer AD, Vivas A, Arik YB, Remigy J, Lahitte J, Lammertink RG, Bacchin P. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance. Tissue Engineering Part A 2019;25:1635-45. [DOI: 10.1089/ten.tea.2019.0021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
22 Verma SK, Modi A, Dravid A, Bellare J. Lactobionic acid-functionalized polyethersulfone hollow fiber membranes promote HepG2 attachment and function. RSC Adv 2018;8:29078-88. [DOI: 10.1039/c8ra02282h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Sasongko NA, Siahaan P, Lusiana RA, Prasasty V. Understanding the interaction of polysulfone with urea and creatinine at the molecular level and its application for hemodialysis membrane. J Phys : Conf Ser 2020;1524:012084. [DOI: 10.1088/1742-6596/1524/1/012084] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Wu Q, Therriault D, Heuzey M. Processing and Properties of Chitosan Inks for 3D Printing of Hydrogel Microstructures. ACS Biomater Sci Eng 2018;4:2643-52. [DOI: 10.1021/acsbiomaterials.8b00415] [Cited by in Crossref: 46] [Cited by in F6Publishing: 32] [Article Influence: 11.5] [Reference Citation Analysis]