BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Harfe BD, Jinks-Robertson S. DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae. Mol Cell 2000;6:1491-9. [PMID: 11163221 DOI: 10.1016/s1097-2765(00)00145-3] [Cited by in Crossref: 93] [Cited by in F6Publishing: 64] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Chan K, Gordenin DA. Clusters of Multiple Mutations: Incidence and Molecular Mechanisms. Annu Rev Genet 2015;49:243-67. [PMID: 26631512 DOI: 10.1146/annurev-genet-112414-054714] [Cited by in Crossref: 76] [Cited by in F6Publishing: 60] [Article Influence: 12.7] [Reference Citation Analysis]
2 Garcia-Diaz M, Bebenek K. Multiple functions of DNA polymerases. CRC Crit Rev Plant Sci 2007;26:105-22. [PMID: 18496613 DOI: 10.1080/07352680701252817] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 3.6] [Reference Citation Analysis]
3 Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL, Saksena G. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 2013;45:970-976. [PMID: 23852170 DOI: 10.1038/ng.2702] [Cited by in Crossref: 707] [Cited by in F6Publishing: 632] [Article Influence: 78.6] [Reference Citation Analysis]
4 Tran PT, Simon JA, Liskay RM. Interactions of Exo1p with components of MutLalpha in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2001;98:9760-5. [PMID: 11481425 DOI: 10.1073/pnas.161175998] [Cited by in Crossref: 89] [Cited by in F6Publishing: 87] [Article Influence: 4.2] [Reference Citation Analysis]
5 Arbel-Eden A, Joseph-Strauss D, Masika H, Printzental O, Rachi E, Simchen G. Trans-Lesion DNA Polymerases May Be Involved in Yeast Meiosis. G3 (Bethesda) 2013;3:633-44. [PMID: 23550131 DOI: 10.1534/g3.113.005603] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
6 Sonoda E, Okada T, Zhao GY, Tateishi S, Araki K, Yamaizumi M, Yagi T, Verkaik NS, van Gent DC, Takata M, Takeda S. Multiple roles of Rev3, the catalytic subunit of polzeta in maintaining genome stability in vertebrates. EMBO J 2003;22:3188-97. [PMID: 12805232 DOI: 10.1093/emboj/cdg308] [Cited by in Crossref: 161] [Cited by in F6Publishing: 154] [Article Influence: 8.5] [Reference Citation Analysis]
7 Minesinger BK, Jinks-Robertson S. Roles of RAD6 epistasis group members in spontaneous polzeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 2005;169:1939-55. [PMID: 15687278 DOI: 10.1534/genetics.104.033894] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 2.9] [Reference Citation Analysis]
8 Colgin LM, Hackmann AF, Emond MJ, Monnat RJ Jr. The unexpected landscape of in vivo somatic mutation in a human epithelial cell lineage. Proc Natl Acad Sci U S A 2002;99:1437-42. [PMID: 11818556 DOI: 10.1073/pnas.032655699] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 1.9] [Reference Citation Analysis]
9 Shilkin ES, Boldinova EO, Stolyarenko AD, Goncharova RI, Chuprov-Netochin RN, Khairullin RF, Smal MP, Makarova AV. Translesion DNA Synthesis and Carcinogenesis. Biochemistry (Mosc) 2020;85:425-35. [PMID: 32569550 DOI: 10.1134/S0006297920040033] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SA, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microb Cell 2019;6:1-64. [PMID: 30652105 DOI: 10.15698/mic2019.01.664] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
11 Dahal BK, Kadyrova LY, Delfino KR, Rogozin IB, Gujar V, Lobachev KS, Kadyrov FA. Involvement of DNA mismatch repair in the maintenance of heterochromatic DNA stability in Saccharomyces cerevisiae. PLoS Genet 2017;13:e1007074. [PMID: 29069084 DOI: 10.1371/journal.pgen.1007074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
12 Zhong X, Garg P, Stith CM, Nick McElhinny SA, Kissling GE, Burgers PM, Kunkel TA. The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins. Nucleic Acids Res 2006;34:4731-42. [PMID: 16971464 DOI: 10.1093/nar/gkl465] [Cited by in Crossref: 93] [Cited by in F6Publishing: 91] [Article Influence: 5.8] [Reference Citation Analysis]
13 Sheltzer JM, Blank HM, Pfau SJ, Tange Y, George BM, Humpton TJ, Brito IL, Hiraoka Y, Niwa O, Amon A. Aneuploidy drives genomic instability in yeast. Science 2011;333:1026-30. [PMID: 21852501 DOI: 10.1126/science.1206412] [Cited by in Crossref: 273] [Cited by in F6Publishing: 252] [Article Influence: 24.8] [Reference Citation Analysis]
14 Degtyareva NP, Heyburn L, Sterling J, Resnick MA, Gordenin DA, Doetsch PW. Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines. Nucleic Acids Res 2013;41:8995-9005. [PMID: 23925127 DOI: 10.1093/nar/gkt671] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
15 Laughery MF, Mayes HC, Pedroza IK, Wyrick JJ. R-loop formation by dCas9 is mutagenic in Saccharomyces cerevisiae. Nucleic Acids Res 2019;47:2389-401. [PMID: 30590793 DOI: 10.1093/nar/gky1278] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
16 Grogan D, Jinks-Robertson S. Formaldehyde-induced mutagenesis in Saccharomyces cerevisiae: molecular properties and the roles of repair and bypass systems. Mutat Res 2012;731:92-8. [PMID: 22197481 DOI: 10.1016/j.mrfmmm.2011.12.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
17 Simpson LJ, Sale JE. Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J 2003;22:1654-64. [PMID: 12660171 DOI: 10.1093/emboj/cdg161] [Cited by in Crossref: 141] [Cited by in F6Publishing: 140] [Article Influence: 7.4] [Reference Citation Analysis]
18 Kozmin SG, Pavlov YI, Kunkel TA, Sage E. Roles of Saccharomyces cerevisiae DNA polymerases Poleta and Polzeta in response to irradiation by simulated sunlight. Nucleic Acids Res 2003;31:4541-52. [PMID: 12888515 DOI: 10.1093/nar/gkg489] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 2.8] [Reference Citation Analysis]
19 Bailey LJ, Doherty AJ. Mitochondrial DNA replication: a PrimPol perspective. Biochem Soc Trans 2017;45:513-29. [PMID: 28408491 DOI: 10.1042/BST20160162] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
20 Roberts SA, Sterling J, Thompson C, Harris S, Mav D, Shah R, Klimczak LJ, Kryukov GV, Malc E, Mieczkowski PA, Resnick MA, Gordenin DA. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell 2012;46:424-35. [PMID: 22607975 DOI: 10.1016/j.molcel.2012.03.030] [Cited by in Crossref: 278] [Cited by in F6Publishing: 253] [Article Influence: 27.8] [Reference Citation Analysis]
21 Stepchenkova EI, Zhuk AS, Cui J, Tarakhovskaya ER, Barbari SR, Shcherbakova PV, Polev DE, Fedorov R, Poliakov E, Rogozin IB, Lada AG, Pavlov YI. Compensation for the absence of the catalytically active half of DNA polymerase ε in yeast by positively selected mutations in CDC28. Genetics 2021;218:iyab060. [PMID: 33844024 DOI: 10.1093/genetics/iyab060] [Reference Citation Analysis]
22 Bloom JC, Schimenti JC. Sexually dimorphic DNA damage responses and mutation avoidance in the mouse germline. Genes Dev 2020;34:1637-49. [PMID: 33184219 DOI: 10.1101/gad.341602.120] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Rogozin IB, Belinky F, Pavlenko V, Shabalina SA, Kristensen DM, Koonin EV. Evolutionary switches between two serine codon sets are driven by selection. Proc Natl Acad Sci U S A 2016;113:13109-13. [PMID: 27799560 DOI: 10.1073/pnas.1615832113] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
24 Szüts D, Marcus AP, Himoto M, Iwai S, Sale JE. REV1 restrains DNA polymerase zeta to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo. Nucleic Acids Res 2008;36:6767-80. [PMID: 18953031 DOI: 10.1093/nar/gkn651] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 3.6] [Reference Citation Analysis]
25 Mudrak SV, Welz-Voegele C, Jinks-Robertson S. The polymerase eta translesion synthesis DNA polymerase acts independently of the mismatch repair system to limit mutagenesis caused by 7,8-dihydro-8-oxoguanine in yeast. Mol Cell Biol 2009;29:5316-26. [PMID: 19635811 DOI: 10.1128/MCB.00422-09] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
26 Lee YS, Gregory MT, Yang W. Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass. Proc Natl Acad Sci U S A 2014;111:2954-9. [PMID: 24449906 DOI: 10.1073/pnas.1324001111] [Cited by in Crossref: 113] [Cited by in F6Publishing: 112] [Article Influence: 14.1] [Reference Citation Analysis]
27 Donigan KA, Cerritelli SM, McDonald JP, Vaisman A, Crouch RJ, Woodgate R. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae. DNA Repair (Amst) 2015;35:1-12. [PMID: 26340535 DOI: 10.1016/j.dnarep.2015.07.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
28 Northam MR, Garg P, Baitin DM, Burgers PM, Shcherbakova PV. A novel function of DNA polymerase zeta regulated by PCNA. EMBO J 2006;25:4316-25. [PMID: 16957771 DOI: 10.1038/sj.emboj.7601320] [Cited by in Crossref: 75] [Cited by in F6Publishing: 76] [Article Influence: 4.7] [Reference Citation Analysis]
29 Kochenova OV, Bezalel-Buch R, Tran P, Makarova AV, Chabes A, Burgers PM, Shcherbakova PV. Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations. Nucleic Acids Res 2017;45:1200-18. [PMID: 28180291 DOI: 10.1093/nar/gkw1149] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
30 Yoshihara R, Nozawa S, Hase Y, Narumi I, Hidema J, Sakamoto AN. Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings. J Radiat Res 2013;54:1050-6. [PMID: 23728320 DOI: 10.1093/jrr/rrt074] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
31 McCulloch SD, Kunkel TA. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 2008;18:148-61. [PMID: 18166979 DOI: 10.1038/cr.2008.4] [Cited by in Crossref: 338] [Cited by in F6Publishing: 305] [Article Influence: 24.1] [Reference Citation Analysis]
32 Stone JE, Lujan SA, Kunkel TA, Kunkel TA. DNA polymerase zeta generates clustered mutations during bypass of endogenous DNA lesions in Saccharomyces cerevisiae. Environ Mol Mutagen 2012;53:777-86. [PMID: 22965922 DOI: 10.1002/em.21728] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
33 Kow YW, Bao G, Minesinger B, Jinks-Robertson S, Siede W, Jiang YL, Greenberg MM. Mutagenic effects of abasic and oxidized abasic lesions in Saccharomyces cerevisiae. Nucleic Acids Res 2005;33:6196-202. [PMID: 16257982 DOI: 10.1093/nar/gki926] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 1.9] [Reference Citation Analysis]
34 Kim N, Mudrak SV, Jinks-Robertson S. The dCMP transferase activity of yeast Rev1 is biologically relevant during the bypass of endogenously generated AP sites. DNA Repair (Amst) 2011;10:1262-71. [PMID: 22024240 DOI: 10.1016/j.dnarep.2011.09.017] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
35 Abdulovic AL, Jinks-Robertson S. The in vivo characterization of translesion synthesis across UV-induced lesions in Saccharomyces cerevisiae: insights into Pol zeta- and Pol eta-dependent frameshift mutagenesis. Genetics 2006;172:1487-98. [PMID: 16387871 DOI: 10.1534/genetics.105.052480] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 1.7] [Reference Citation Analysis]
36 Abdulovic AL, Minesinger BK, Jinks-Robertson S. The effect of sequence context on spontaneous Polzeta-dependent mutagenesis in Saccharomyces cerevisiae. Nucleic Acids Res 2008;36:2082-93. [PMID: 18276637 DOI: 10.1093/nar/gkn054] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
37 Nakagawa M, Takahashi S, Tanaka A, Narumi I, Sakamoto AN. Role of AtPolζ, AtRev1, and AtPolη in UV light-induced mutagenesis in Arabidopsis. Plant Physiol 2011;155:414-20. [PMID: 21030509 DOI: 10.1104/pp.110.166082] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
38 Lehner K, Jinks-Robertson S. The mismatch repair system promotes DNA polymerase zeta-dependent translesion synthesis in yeast. Proc Natl Acad Sci U S A 2009;106:5749-54. [PMID: 19307574 DOI: 10.1073/pnas.0812715106] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
39 Stone JE, Kissling GE, Lujan SA, Rogozin IB, Stith CM, Burgers PM, Kunkel TA. Low-fidelity DNA synthesis by the L979F mutator derivative of Saccharomyces cerevisiae DNA polymerase zeta. Nucleic Acids Res 2009;37:3774-87. [PMID: 19380376 DOI: 10.1093/nar/gkp238] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
40 Stone JE, Kumar D, Binz SK, Inase A, Iwai S, Chabes A, Burgers PM, Kunkel TA. Lesion bypass by S. cerevisiae Pol ζ alone. DNA Repair (Amst) 2011;10:826-34. [PMID: 21622032 DOI: 10.1016/j.dnarep.2011.04.032] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
41 Kim N, Jinks-Robertson S. Abasic sites in the transcribed strand of yeast DNA are removed by transcription-coupled nucleotide excision repair. Mol Cell Biol 2010;30:3206-15. [PMID: 20421413 DOI: 10.1128/MCB.00308-10] [Cited by in Crossref: 49] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
42 Van Sloun PP, Varlet I, Sonneveld E, Boei JJ, Romeijn RJ, Eeken JC, De Wind N. Involvement of mouse Rev3 in tolerance of endogenous and exogenous DNA damage. Mol Cell Biol 2002;22:2159-69. [PMID: 11884603 DOI: 10.1128/MCB.22.7.2159-2169.2002] [Cited by in Crossref: 64] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
43 Gu C, Luo J, Lu X, Tang Y, Ma Y, Yun Y, Cao J, Cao J, Huang Z, Zhou X, Zhang S. REV7 confers radioresistance of esophagus squamous cell carcinoma by recruiting PRDX2. Cancer Sci 2019;110:962-72. [PMID: 30657231 DOI: 10.1111/cas.13946] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
44 Segovia R, Shen Y, Lujan SA, Jones SJ, Stirling PC. Hypermutation signature reveals a slippage and realignment model of translesion synthesis by Rev3 polymerase in cisplatin-treated yeast. Proc Natl Acad Sci U S A 2017;114:2663-8. [PMID: 28223526 DOI: 10.1073/pnas.1618555114] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
45 Saini N, Sterling JF, Sakofsky CJ, Giacobone CK, Klimczak LJ, Burkholder AB, Malc EP, Mieczkowski PA, Gordenin DA. Mutation signatures specific to DNA alkylating agents in yeast and cancers. Nucleic Acids Res 2020;48:3692-707. [PMID: 32133535 DOI: 10.1093/nar/gkaa150] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
46 Kochenova OV, Soshkina JV, Stepchenkova EI, Inge-Vechtomov SG, Shcherbakova PV. Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae. Biochemistry (Mosc) 2011;76:49-60. [PMID: 21568839 DOI: 10.1134/s000629791101007x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
47 Suzuki M, Niimi A, Limsirichaikul S, Tomida S, Miao Huang Q, Izuta S, Usukura J, Itoh Y, Hishida T, Akashi T, Nakagawa Y, Kikuchi A, Pavlov Y, Murate T, Takahashi T. PCNA mono-ubiquitination and activation of translesion DNA polymerases by DNA polymerase {alpha}. J Biochem 2009;146:13-21. [PMID: 19279190 DOI: 10.1093/jb/mvp043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
48 Kim N, Jinks-Robertson S. dUTP incorporation into genomic DNA is linked to transcription in yeast. Nature 2009;459:1150-3. [PMID: 19448611 DOI: 10.1038/nature08033] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 3.5] [Reference Citation Analysis]
49 Northam MR, Moore EA, Mertz TM, Binz SK, Stith CM, Stepchenkova EI, Wendt KL, Burgers PM, Shcherbakova PV. DNA polymerases ζ and Rev1 mediate error-prone bypass of non-B DNA structures. Nucleic Acids Res 2014;42:290-306. [PMID: 24049079 DOI: 10.1093/nar/gkt830] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 6.4] [Reference Citation Analysis]
50 Sakamoto AN. Translesion Synthesis in Plants: Ultraviolet Resistance and Beyond. Front Plant Sci 2019;10:1208. [PMID: 31649692 DOI: 10.3389/fpls.2019.01208] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
51 Sale JE. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb Perspect Biol 2013;5:a012708. [PMID: 23457261 DOI: 10.1101/cshperspect.a012708] [Cited by in Crossref: 126] [Cited by in F6Publishing: 128] [Article Influence: 14.0] [Reference Citation Analysis]
52 Bui DT, Li JJ. DNA Rereplication Is Susceptible to Nucleotide-Level Mutagenesis. Genetics 2019;212:445-60. [PMID: 31028114 DOI: 10.1534/genetics.119.302194] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
53 Wang F, Li P, Shao Y, Li Y, Zhang K, Li M, Wang R, Zheng S, Wang Y, Song S, Feng S, Liu F, Xiao W, Li X. Site-specific proteolytic cleavage prevents ubiquitination and degradation of human REV3L, the catalytic subunit of DNA polymerase ζ. Nucleic Acids Res 2020;48:3619-37. [PMID: 32064513 DOI: 10.1093/nar/gkaa096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Kreisel K, Engqvist MKM, Kalm J, Thompson LJ, Boström M, Navarrete C, McDonald JP, Larsson E, Woodgate R, Clausen AR. DNA polymerase η contributes to genome-wide lagging strand synthesis. Nucleic Acids Res 2019;47:2425-35. [PMID: 30597049 DOI: 10.1093/nar/gky1291] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
55 Belinky F, Sela I, Rogozin IB, Koonin EV. Crossing fitness valleys via double substitutions within codons. BMC Biol 2019;17:105. [PMID: 31842858 DOI: 10.1186/s12915-019-0727-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
56 Kim N, Abdulovic AL, Gealy R, Lippert MJ, Jinks-Robertson S. Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair (Amst) 2007;6:1285-96. [PMID: 17398168 DOI: 10.1016/j.dnarep.2007.02.023] [Cited by in Crossref: 83] [Cited by in F6Publishing: 79] [Article Influence: 5.5] [Reference Citation Analysis]
57 Arana ME, Kunkel TA. Mutator phenotypes due to DNA replication infidelity. Semin Cancer Biol 2010;20:304-11. [PMID: 20934516 DOI: 10.1016/j.semcancer.2010.10.003] [Cited by in Crossref: 60] [Cited by in F6Publishing: 51] [Article Influence: 5.0] [Reference Citation Analysis]
58 Brandão LN, Ferguson R, Santoro I, Jinks-Robertson S, Sclafani RA. The role of Dbf4-dependent protein kinase in DNA polymerase ζ-dependent mutagenesis in Saccharomyces cerevisiae. Genetics 2014;197:1111-22. [PMID: 24875188 DOI: 10.1534/genetics.114.165308] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
59 Northam MR, Robinson HA, Kochenova OV, Shcherbakova PV. Participation of DNA polymerase zeta in replication of undamaged DNA in Saccharomyces cerevisiae. Genetics 2010;184:27-42. [PMID: 19841096 DOI: 10.1534/genetics.109.107482] [Cited by in Crossref: 82] [Cited by in F6Publishing: 79] [Article Influence: 6.3] [Reference Citation Analysis]
60 McCulloch SD, Kunkel TA. Multiple solutions to inefficient lesion bypass by T7 DNA polymerase. DNA Repair (Amst) 2006;5:1373-83. [PMID: 16876489 DOI: 10.1016/j.dnarep.2006.06.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
61 Makarova AV, Burgers PM. Eukaryotic DNA polymerase ζ. DNA Repair (Amst) 2015;29:47-55. [PMID: 25737057 DOI: 10.1016/j.dnarep.2015.02.012] [Cited by in Crossref: 84] [Cited by in F6Publishing: 75] [Article Influence: 12.0] [Reference Citation Analysis]
62 Kadyrova LY, Mertz TM, Zhang Y, Northam MR, Sheng Z, Lobachev KS, Shcherbakova PV, Kadyrov FA. A reversible histone H3 acetylation cooperates with mismatch repair and replicative polymerases in maintaining genome stability. PLoS Genet 2013;9:e1003899. [PMID: 24204308 DOI: 10.1371/journal.pgen.1003899] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
63 Lehner K, Jinks-Robertson S. Shared genetic pathways contribute to the tolerance of endogenous and low-dose exogenous DNA damage in yeast. Genetics 2014;198:519-30. [PMID: 25060101 DOI: 10.1534/genetics.114.168617] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
64 Belfield EJ, Ding ZJ, Jamieson FJC, Visscher AM, Zheng SJ, Mithani A, Harberd NP. DNA mismatch repair preferentially protects genes from mutation. Genome Res 2018;28:66-74. [PMID: 29233924 DOI: 10.1101/gr.219303.116] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]