BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Das A, Ben-menachem T, Cooper GS, Chak A, Sivak MV, Gonet JA, Wong RC. Prediction of outcome in acute lower-gastrointestinal haemorrhage based on an artificial neural network: internal and external validation of a predictive model. The Lancet 2003;362:1261-6. [DOI: 10.1016/s0140-6736(03)14568-0] [Cited by in Crossref: 129] [Cited by in F6Publishing: 44] [Article Influence: 6.8] [Reference Citation Analysis]
Number Citing Articles
1 Arabi NA, Musaad AM, Mohammed FAH, Ahmed EE, Abdelaziz MSE. Acute lower gastrointestinal bleeding in Sudanese patients: a study on 301 patients in a specialized centre. Arab J Gastroenterol 2018;19:84-7. [PMID: 29885783 DOI: 10.1016/j.ajg.2018.03.001] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
2 Litvin A, Korenev S, Rumovskaya S, Sartelli M, Baiocchi G, Biffl WL, Coccolini F, Di Saverio S, Kelly MD, Kluger Y, Leppäniemi A, Sugrue M, Catena F. WSES project on decision support systems based on artificial neural networks in emergency surgery. World J Emerg Surg 2021;16:50. [PMID: 34565420 DOI: 10.1186/s13017-021-00394-9] [Reference Citation Analysis]
3 Lahner E, Intraligi M, Buscema M, Centanni M, Vannella L, Grossi E, Annibale B. Artificial neural networks in the recognition of the presence of thyroid disease in patients with atrophic body gastritis. World J Gastroenterol 2008; 14(4): 563-568 [PMID: 18203288 DOI: 10.3748/wjg.14.563] [Cited by in CrossRef: 23] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
4 Nagata N, Niikura R, Aoki T, Moriyasu S, Sakurai T, Shimbo T, Sekine K, Okubo H, Watanabe K, Yokoi C, Akiyama J, Yanase M, Mizokami M, Fujimoto K, Uemura N. Risk factors for adverse in-hospital outcomes in acute colonic diverticular hemorrhage. World J Gastroenterol 2015; 21(37): 10697-10703 [PMID: 26457031 DOI: 10.3748/wjg.v21.i37.10697] [Cited by in CrossRef: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
5 Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Prediction of in-hospital mortality in patients on mechanical ventilation post traumatic brain injury: machine learning approach. BMC Med Inform Decis Mak 2020;20:336. [PMID: 33317528 DOI: 10.1186/s12911-020-01363-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Grossi E, Marmo R, Intraligi M, Buscema M. Artificial Neural Networks for Early Prediction of Mortality in Patients with Non Variceal Upper GI Bleeding (UGIB). Biomed Inform Insights 2008;1:7-19. [PMID: 27429551 DOI: 10.4137/bii.s814] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
7 Anirvan P, Meher D, Singh SP. Artificial Intelligence in Gastrointestinal Endoscopy in a Resource-constrained Setting: A Reality Check. Euroasian J Hepatogastroenterol 2020;10:92-7. [PMID: 33511071 DOI: 10.5005/jp-journals-10018-1322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Das AM, Sood N, Hodgin K, Chang L, Carson SS. Development of a triage protocol for patients presenting with gastrointestinal hemorrhage: a prospective cohort study. Crit Care. 2008;12:R57. [PMID: 18430209 DOI: 10.1186/cc6878] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
9 Cao Y, Forssten MP, Mohammad Ismail A, Borg T, Ioannidis I, Montgomery S, Mohseni S. Predictive Values of Preoperative Characteristics for 30-Day Mortality in Traumatic Hip Fracture Patients. J Pers Med 2021;11:353. [PMID: 33924993 DOI: 10.3390/jpm11050353] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Azeez D, Ali MA, Gan KB, Saiboon I. Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department. Springerplus 2013;2:416. [PMID: 24052927 DOI: 10.1186/2193-1801-2-416] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
11 Weldon DT, Burke SJ, Sun S, Mimura H, Golzarian J. Interventional management of lower gastrointestinal bleeding. Eur Radiol. 2008;18:857-867. [PMID: 18185932 DOI: 10.1007/s00330-007-0844-2] [Cited by in Crossref: 61] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
12 Takayama T, Ebinuma H, Tada S, Yamagishi Y, Wakabayashi K, Ojiro K, Kanai T, Saito H, Hibi T; Keio Association for the Study of Liver Diseases. Prediction of effect of pegylated interferon alpha-2b plus ribavirin combination therapy in patients with chronic hepatitis C infection. PLoS One 2011;6:e27223. [PMID: 22164207 DOI: 10.1371/journal.pone.0027223] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
13 Lahner E, Grossi E, Intraligi M, Buscema M, Corleto VD, Fave GD, Annibale B. Possible contribution of advanced statistical methods (artificial neural networks and linear discriminant analysis) in recognition of patients with suspected atrophic body gastritis. World J Gastroenterol 2005; 11(37): 5867-5873 [PMID: 16270400 DOI: 10.3748/wjg.v11.i37.5867] [Cited by in CrossRef: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
14 Eftekhar B, Mohammad K, Ardebili HE, Ghodsi M, Ketabchi E. Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med Inform Decis Mak 2005;5:3. [PMID: 15713231 DOI: 10.1186/1472-6947-5-3] [Cited by in Crossref: 111] [Cited by in F6Publishing: 83] [Article Influence: 6.5] [Reference Citation Analysis]
15 Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Prediction of in-hospital mortality in patients with post traumatic brain injury using National Trauma Registry and Machine Learning Approach. Scand J Trauma Resusc Emerg Med 2020;28:44. [PMID: 32460867 DOI: 10.1186/s13049-020-00738-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Shrestha MP, Borgstrom M, Trowers EA. Elevated lactate level predicts intensive care unit admissions, endoscopies and transfusions in patients with acute gastrointestinal bleeding. Clin Exp Gastroenterol 2018;11:185-92. [PMID: 29872331 DOI: 10.2147/CEG.S162703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Kim KO, Kozarek R, Gluck M, Ross A, Lin OS. Changes in Lower Gastrointestinal Bleeding Presentation, Management, and Outcomes Over a 10-Year Span. J Clin Gastroenterol 2019;53:e463-7. [PMID: 31593973 DOI: 10.1097/MCG.0000000000001223] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
18 Mujtaba S, Chawla S, Massaad JF. Diagnosis and Management of Non-Variceal Gastrointestinal Hemorrhage: A Review of Current Guidelines and Future Perspectives. J Clin Med. 2020;9:402. [PMID: 32024301 DOI: 10.3390/jcm9020402] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
19 Shi HY, Lee HH, Tsai JT, Ho WH, Chen CF, Lee KT, Chiu CC. Comparisons of prediction models of quality of life after laparoscopic cholecystectomy: a longitudinal prospective study. PLoS One 2012;7:e51285. [PMID: 23284677 DOI: 10.1371/journal.pone.0051285] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
20 Perez MV, Dewey FE, Tan SY, Myers J, Froelicher VF. Added value of a resting ECG neural network that predicts cardiovascular mortality. Ann Noninvasive Electrocardiol 2009;14:26-34. [PMID: 19149790 DOI: 10.1111/j.1542-474X.2008.00270.x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
21 Briganti G, Le Moine O. Artificial Intelligence in Medicine: Today and Tomorrow. Front Med (Lausanne) 2020;7:27. [PMID: 32118012 DOI: 10.3389/fmed.2020.00027] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 9.5] [Reference Citation Analysis]
22 Barnert J, Messmann H. Diagnosis and management of lower gastrointestinal bleeding. Nat Rev Gastroenterol Hepatol. 2009;6:637-646. [PMID: 19881516 DOI: 10.1038/nrgastro.2009.167] [Cited by in Crossref: 108] [Cited by in F6Publishing: 67] [Article Influence: 9.0] [Reference Citation Analysis]
23 Chiu JS, Chen CA, Lee CH, Li YC, Lin YF, Wang YF, Yu FC. Neural network technology to predict intracellular water volume. Int J Clin Pract 2006;60:1231-8. [PMID: 16981968 DOI: 10.1111/j.1742-1241.2005.00761.x] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
24 Liu X, Pei X, Li N, Zhang Y, Zhang X, Chen J, Lv L, Ma H, Wu X, Zhao W, Lou T. Improved glomerular filtration rate estimation by an artificial neural network. PLoS One 2013;8:e58242. [PMID: 23516450 DOI: 10.1371/journal.pone.0058242] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
25 Saxena N, Strate LL. Diverticular stigmata of recent hemorrhage: find one, probe one, treat one. Gastrointest Endosc 2016;83:424-6. [PMID: 26773638 DOI: 10.1016/j.gie.2015.10.015] [Reference Citation Analysis]
26 Lhewa DY, Strate LL. Pros and cons of colonoscopy in management of acute lower gastrointestinal bleeding. World J Gastroenterol 2012; 18(11): 1185-1190 [PMID: 22468081 DOI: 10.3748/wjg.v18.i11.1185] [Cited by in CrossRef: 56] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
27 Maulahela H, Annisa NG. Current advancements in application of artificial intelligence in clinical decision-making by gastroenterologists in gastrointestinal bleeding. Artif Intell Gastroenterol 2022; 3(1): 13-20 [DOI: 10.35712/aig.v3.i1.13] [Reference Citation Analysis]
28 Fallah N, Mohammad K, Nourijelyani K, Eshraghian MR, Seyyedsalehi SA, Raiessi M, Rahmani M, Goodarzi HR, Darvish S, Zeraati H, Davoodi G, Sadeghian S. Nonlinear association between serum testosterone levels and coronary artery disease in Iranian men. Eur J Epidemiol 2009;24:297-306. [PMID: 19357974 DOI: 10.1007/s10654-009-9336-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
29 Chiu J, Wang Y, Su Y, Wei L, Liao J, Li Y. Artificial Neural Network to Predict Skeletal Metastasis in Patients with Prostate Cancer. J Med Syst 2009;33:91-100. [DOI: 10.1007/s10916-008-9168-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
30 Dalmadge CL, Cain M. U.S. Counties’ Vulnerability to Methamphetamine Labs. Journal of Drug Issues 2015;45:118-32. [DOI: 10.1177/0022042614559841] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
31 Kröner PT, Engels MM, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27(40): 6794-6824 [PMID: 34790008 DOI: 10.3748/wjg.v27.i40.6794] [Reference Citation Analysis]
32 Ayaru L, Ypsilantis PP, Nanapragasam A, Choi RC, Thillanathan A, Min-Ho L, Montana G. Prediction of Outcome in Acute Lower Gastrointestinal Bleeding Using Gradient Boosting. PLoS One. 2015;10:e0132485. [PMID: 26172121 DOI: 10.1371/journal.pone.0132485] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
33 Hayasaka J, Kikuchi D, Odagiri H, Nomura K, Ochiai Y, Okamura T, Suzuki Y, Mitsunaga Y, Dan N, Tanaka M, Yamashita S, Matsui A, Hoteya S. Effectiveness of Clipping for Definitive Colonic Diverticular Bleeding in Preventing Early Recurrent Bleeding. Intern Med 2022;61:451-60. [PMID: 35173136 DOI: 10.2169/internalmedicine.7702-21] [Reference Citation Analysis]
34 Shung D, Simonov M, Gentry M, Au B, Laine L. Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review. Dig Dis Sci. 2019;64:2078-2087. [PMID: 31055722 DOI: 10.1007/s10620-019-05645-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
35 Tziortziotis I, Laskaratos FM, Coda S. Role of Artificial Intelligence in Video Capsule Endoscopy. Diagnostics (Basel) 2021;11:1192. [PMID: 34209029 DOI: 10.3390/diagnostics11071192] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Ramaekers R, Perry J, Leafloor C, Thiruganasambandamoorthy V. Prediction Model for 30-day Outcomes Among Emergency Department Patients with Lower Gastrointestinal Bleeding. West J Emerg Med 2020;21:343-7. [PMID: 32191192 DOI: 10.5811/westjem.2020.1.45420] [Reference Citation Analysis]
37 Chiu CC, Lee KT, Lee HH, Wang JJ, Sun DP, Huang CC, Shi HY. Comparison of Models for Predicting Quality of Life After Surgical Resection of Hepatocellular Carcinoma: a Prospective Study. J Gastrointest Surg. 2018;22:1724-1731. [PMID: 29916106 DOI: 10.1007/s11605-018-3833-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
38 Kwak MS, Cha JM, Han YJ, Yoon JY, Jeon JW, Shin HP, Joo KR, Lee JI. The Clinical Outcomes of Lower Gastrointestinal Bleeding Are Not Better than Those of Upper Gastrointestinal Bleeding. J Korean Med Sci 2016;31:1611-6. [PMID: 27550490 DOI: 10.3346/jkms.2016.31.10.1611] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
39 Hui EP, Leung LK, Poon TC, Mo F, Chan VT, Ma AT, Poon A, Hui EK, Mak SS, Lai M. Prediction of outcome in cancer patients with febrile neutropenia: a prospective validation of the Multinational Association for Supportive Care in Cancer risk index in a Chinese population and comparison with the Talcott model and artificial neural network. Support Care Cancer. 2011;19:1625-1635. [PMID: 20820815 DOI: 10.1007/s00520-010-0993-8] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
40 Donohoe CL, Rockall TA. Is there still a role for the surgeon in the management of gastrointestinal bleeding ? Best Pract Res Clin Gastroenterol 2019;42-43:101622. [PMID: 31785734 DOI: 10.1016/j.bpg.2019.101622] [Reference Citation Analysis]
41 Loftus TJ, Brakenridge SC, Croft CA, Smith RS, Efron PA, Moore FA, Mohr AM, Jordan JR. Neural network prediction of severe lower intestinal bleeding and the need for surgical intervention. J Surg Res 2017;212:42-7. [PMID: 28550920 DOI: 10.1016/j.jss.2016.12.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
42 Strate LL, Ayanian JZ, Kotler G, Syngal S. Risk factors for mortality in lower intestinal bleeding. Clin Gastroenterol Hepatol. 2008;6:1004-1010; quiz 955-. [PMID: 18558513 DOI: 10.1016/j.cgh.2008.03.021] [Cited by in Crossref: 145] [Cited by in F6Publishing: 111] [Article Influence: 10.4] [Reference Citation Analysis]
43 Takayama T, Okamoto S, Hisamatsu T, Naganuma M, Matsuoka K, Mizuno S, Bessho R, Hibi T, Kanai T. Computer-Aided Prediction of Long-Term Prognosis of Patients with Ulcerative Colitis after Cytoapheresis Therapy. PLoS One 2015;10:e0131197. [PMID: 26111148 DOI: 10.1371/journal.pone.0131197] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
44 Walczak S, Velanovich V. Prediction of perioperative transfusions using an artificial neural network. PLoS One 2020;15:e0229450. [PMID: 32092108 DOI: 10.1371/journal.pone.0229450] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
45 Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Using trauma registry data to predict prolonged mechanical ventilation in patients with traumatic brain injury: Machine learning approach. PLoS One 2020;15:e0235231. [PMID: 32639971 DOI: 10.1371/journal.pone.0235231] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Aoki T, Yamada A, Nagata N, Niikura R, Hirata Y, Koike K. External validation of the NOBLADS score, a risk scoring system for severe acute lower gastrointestinal bleeding. PLoS One. 2018;13:e0196514. [PMID: 29698506 DOI: 10.1371/journal.pone.0196514] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
47 Abouzari M, Goshtasbi K, Sarna B, Khosravi P, Reutershan T, Mostaghni N, Lin HW, Djalilian HR. Prediction of vestibular schwannoma recurrence using artificial neural network. Laryngoscope Investig Otolaryngol 2020;5:278-85. [PMID: 32337359 DOI: 10.1002/lio2.362] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
48 Tarasconi A, Perrone G, Davies J, Coimbra R, Moore E, Azzaroli F, Abongwa H, De Simone B, Gallo G, Rossi G, Abu-Zidan F, Agnoletti V, de'Angelis G, de'Angelis N, Ansaloni L, Baiocchi GL, Carcoforo P, Ceresoli M, Chichom-Mefire A, Di Saverio S, Gaiani F, Giuffrida M, Hecker A, Inaba K, Kelly M, Kirkpatrick A, Kluger Y, Leppäniemi A, Litvin A, Ordoñez C, Pattonieri V, Peitzman A, Pikoulis M, Sakakushev B, Sartelli M, Shelat V, Tan E, Testini M, Velmahos G, Wani I, Weber D, Biffl W, Coccolini F, Catena F. Anorectal emergencies: WSES-AAST guidelines. World J Emerg Surg 2021;16:48. [PMID: 34530908 DOI: 10.1186/s13017-021-00384-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Singh M, Chiang J, Seah A, Liu N, Mathew R, Mathur S. A clinical predictive model for risk stratification of patients with severe acute lower gastrointestinal bleeding. World J Emerg Surg 2021;16:58. [PMID: 34809648 DOI: 10.1186/s13017-021-00402-y] [Reference Citation Analysis]
50 Khalifa A, Rockey DC. Lower Gastrointestinal Bleeding in Patients With Cirrhosis-Etiology and Outcomes. Am J Med Sci 2020;359:206-11. [PMID: 32087941 DOI: 10.1016/j.amjms.2020.01.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology. World J Gastroenterol 2019; 25(14): 1666-1683 [PMID: 31011253 DOI: 10.3748/wjg.v25.i14.1666] [Cited by in CrossRef: 89] [Cited by in F6Publishing: 61] [Article Influence: 29.7] [Reference Citation Analysis]
52 Ghoshal UC, Rai S, Kulkarni A, Gupta A. Prediction of outcome of treatment of acute severe ulcerative colitis using principal component analysis and artificial intelligence. JGH Open. 2020;4:889-897. [PMID: 33102760 DOI: 10.1002/jgh3.12342] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
53 Fallah N, Mitnitski A, Rockwood K. Applying neural network Poisson regression to predict cognitive score changes. Journal of Applied Statistics 2011;38:2051-62. [DOI: 10.1080/02664763.2010.545112] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
54 Strate LL, Gralnek IM. ACG Clinical Guideline: Management of Patients With Acute Lower Gastrointestinal Bleeding. Am J Gastroenterol. 2016;111:459-474. [PMID: 26925883 DOI: 10.1038/ajg.2016.41] [Cited by in Crossref: 192] [Cited by in F6Publishing: 118] [Article Influence: 32.0] [Reference Citation Analysis]
55 Aoki T, Hirata Y, Yamada A, Koike K. Initial management for acute lower gastrointestinal bleeding. World J Gastroenterol 2019; 25(1): 69-84 [PMID: 30643359 DOI: 10.3748/wjg.v25.i1.69] [Cited by in CrossRef: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]