BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H, Tanaka K. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 2002;298:714-719. [PMID: 12419312 DOI: 10.1016/s0006-291x(02)02550-0] [Cited by in Crossref: 585] [Cited by in F6Publishing: 281] [Article Influence: 30.8] [Reference Citation Analysis]
Number Citing Articles
1 Meixiong J, Vasavda C, Snyder SH, Dong X. MRGPRX4 is a G protein-coupled receptor activated by bile acids that may contribute to cholestatic pruritus. Proc Natl Acad Sci U S A. 2019;116:10525-10530. [PMID: 31068464 DOI: 10.1073/pnas.1903316116] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 11.3] [Reference Citation Analysis]
2 Flynn CR, Albaugh VL, Cai S, Cheung-Flynn J, Williams PE, Brucker RM, Bordenstein SR, Guo Y, Wasserman DH, Abumrad NN. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun 2015;6:7715. [PMID: 26197299 DOI: 10.1038/ncomms8715] [Cited by in Crossref: 121] [Cited by in F6Publishing: 114] [Article Influence: 17.3] [Reference Citation Analysis]
3 Ishizawa M, Akagi D, Makishima M. Lithocholic Acid Is a Vitamin D Receptor Ligand That Acts Preferentially in the Ileum. Int J Mol Sci. 2018;19:1975. [PMID: 29986424 DOI: 10.3390/ijms19071975] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
4 Muñoz R, Carmody JS, Stylopoulos N, Davis P, Kaplan LM. Isolated duodenal exclusion increases energy expenditure and improves glucose homeostasis in diet-induced obese rats. Am J Physiol Regul Integr Comp Physiol 2012;303:R985-93. [PMID: 22972837 DOI: 10.1152/ajpregu.00262.2012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
5 Lyu M, Wang YF, Fan GW, Wang XY, Xu SY, Zhu Y. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota. Front Microbiol 2017;8:2146. [PMID: 29167659 DOI: 10.3389/fmicb.2017.02146] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 13.4] [Reference Citation Analysis]
6 Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol. 2019;12:851-861. [PMID: 30952999 DOI: 10.1038/s41385-019-0162-4] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 18.0] [Reference Citation Analysis]
7 Parséus A, Sommer N, Sommer F, Caesar R, Molinaro A, Ståhlman M, Greiner TU, Perkins R, Bäckhed F. Microbiota-induced obesity requires farnesoid X receptor. Gut 2017;66:429-37. [PMID: 26740296 DOI: 10.1136/gutjnl-2015-310283] [Cited by in Crossref: 200] [Cited by in F6Publishing: 191] [Article Influence: 33.3] [Reference Citation Analysis]
8 Klindt C, Reich M, Hellwig B, Stindt J, Rahnenführer J, Hengstler JG, Köhrer K, Schoonjans K, Häussinger D, Keitel V. The G Protein-Coupled Bile Acid Receptor TGR5 (Gpbar1) Modulates Endothelin-1 Signaling in Liver. Cells 2019;8:E1467. [PMID: 31752395 DOI: 10.3390/cells8111467] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
9 Aggarwal G, Zarrow JE, Mashhadi Z, Flynn CR, Vinson P, Weaver CD, Davies SS. Symmetrically substituted dichlorophenes inhibit N-acyl-phosphatidylethanolamine phospholipase D. J Biol Chem 2020;295:7289-300. [PMID: 32284327 DOI: 10.1074/jbc.RA120.013362] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Huang F, Wang T, Lan Y, Yang L, Pan W, Zhu Y, Lv B, Wei Y, Shi H, Wu H, Zhang B, Wang J, Duan X, Hu Z, Wu X. Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior. Front Behav Neurosci 2015;9:70. [PMID: 25870546 DOI: 10.3389/fnbeh.2015.00070] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
11 Mykytyn K, Askwith C. G-Protein-Coupled Receptor Signaling in Cilia. Cold Spring Harb Perspect Biol 2017;9:a028183. [PMID: 28159877 DOI: 10.1101/cshperspect.a028183] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 7.6] [Reference Citation Analysis]
12 Wu Y, Zhou A, Tang L, Lei Y, Tang B, Zhang L. Bile Acids: Key Regulators and Novel Treatment Targets for Type 2 Diabetes. J Diabetes Res 2020;2020:6138438. [PMID: 32733968 DOI: 10.1155/2020/6138438] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
13 Camilleri M, Vazquez-Roque MI, Carlson P, Burton D, Wong BS, Zinsmeister AR. Association of bile acid receptor TGR5 variation and transit in health and lower functional gastrointestinal disorders. Neurogastroenterol Motil. 2011;23:995-999, e458. [PMID: 21883702 DOI: 10.1111/j.1365-2982.2011.01772.x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
14 Yu Y, Raka F, Adeli K. The Role of the Gut Microbiota in Lipid and Lipoprotein Metabolism. J Clin Med 2019;8:E2227. [PMID: 31861086 DOI: 10.3390/jcm8122227] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
15 Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013;3:1191-1212. [PMID: 23897684 DOI: 10.1002/cphy.c120023] [Cited by in Crossref: 200] [Cited by in F6Publishing: 329] [Article Influence: 22.2] [Reference Citation Analysis]
16 Ní Dhonnabháín R, Xiao Q, O'Malley D. Aberrant Gut-To-Brain Signaling in Irritable Bowel Syndrome - The Role of Bile Acids. Front Endocrinol (Lausanne) 2021;12:745190. [PMID: 34917022 DOI: 10.3389/fendo.2021.745190] [Reference Citation Analysis]
17 Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal. 2010;8:e005. [PMID: 21383957 DOI: 10.1621/nrs.08005] [Cited by in Crossref: 160] [Cited by in F6Publishing: 158] [Article Influence: 13.3] [Reference Citation Analysis]
18 Li Y, Cheng KC, Niu CS, Lo SH, Cheng JT, Niu HS. Investigation of triamterene as an inhibitor of the TGR5 receptor: identification in cells and animals. Drug Des Devel Ther 2017;11:1127-34. [PMID: 28435224 DOI: 10.2147/DDDT.S131892] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
19 Feng L, Yuen YL, Xu J, Liu X, Chan MY, Wang K, Fong WP, Cheung WT, Lee SS. Identification and characterization of a novel PPARα-regulated and 7α-hydroxyl bile acid-preferring cytosolic sulfotransferase mL-STL (Sult2a8). J Lipid Res 2017;58:1114-31. [PMID: 28442498 DOI: 10.1194/jlr.M074302] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
20 Schumacher JD, Guo GL. Pharmacologic Modulation of Bile Acid-FXR-FGF15/FGF19 Pathway for the Treatment of Nonalcoholic Steatohepatitis. Handb Exp Pharmacol 2019;256:325-57. [PMID: 31201553 DOI: 10.1007/164_2019_228] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
21 Alemi F, Kwon E, Poole DP, Lieu T, Lyo V, Cattaruzza F, Cevikbas F, Steinhoff M, Nassini R, Materazzi S, Guerrero-Alba R, Valdez-Morales E, Cottrell GS, Schoonjans K, Geppetti P, Vanner SJ, Bunnett NW, Corvera CU. The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest. 2013;123:1513-1530. [PMID: 23524965 DOI: 10.1172/jci64551] [Cited by in Crossref: 210] [Cited by in F6Publishing: 94] [Article Influence: 23.3] [Reference Citation Analysis]
22 Sasaki T, Mita M, Ikari N, Kuboyama A, Hashimoto S, Kaneko T, Ishiguro M, Shimizu M, Inoue J, Sato R. Identification of key amino acid residues in the hTGR5-nomilin interaction and construction of its binding model. PLoS One 2017;12:e0179226. [PMID: 28594916 DOI: 10.1371/journal.pone.0179226] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
23 Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021;13:883. [PMID: 33803183 DOI: 10.3390/nu13030883] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Zhao M, Wang Z, Yang M, Ding Y, Zhao M, Wu H, Zhang Y, Lu Q. The Roles of Orphan G Protein-Coupled Receptors in Autoimmune Diseases. Clin Rev Allergy Immunol 2021;60:220-43. [PMID: 33411320 DOI: 10.1007/s12016-020-08829-y] [Reference Citation Analysis]
25 Denny JE, Powers JB, Castro HF, Zhang J, Joshi-Barve S, Campagna SR, Schmidt NW. Differential Sensitivity to Plasmodium yoelii Infection in C57BL/6 Mice Impacts Gut-Liver Axis Homeostasis. Sci Rep 2019;9:3472. [PMID: 30837607 DOI: 10.1038/s41598-019-40266-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
26 Kirchweger B, Kratz JM, Ladurner A, Grienke U, Langer T, Dirsch VM, Rollinger JM. In Silico Workflow for the Discovery of Natural Products Activating the G Protein-Coupled Bile Acid Receptor 1. Front Chem 2018;6:242. [PMID: 30013964 DOI: 10.3389/fchem.2018.00242] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
27 Fiorucci S, Distrutti E. Linking liver metabolic and vascular disease via bile acid signaling. Trends Mol Med 2022;28:51-66. [PMID: 34815180 DOI: 10.1016/j.molmed.2021.10.005] [Reference Citation Analysis]
28 Di Ciaula A, Garruti G, Wang DQ, Portincasa P. Cholecystectomy and risk of metabolic syndrome. Eur J Intern Med 2018;53:3-11. [PMID: 29706426 DOI: 10.1016/j.ejim.2018.04.019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
29 Ahmad NN, Pfalzer A, Kaplan LM. Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int J Obes (Lond). 2013;37:1553-1559. [PMID: 23567924 DOI: 10.1038/ijo.2013.38] [Cited by in Crossref: 110] [Cited by in F6Publishing: 108] [Article Influence: 12.2] [Reference Citation Analysis]
30 Ridlon JM, Ikegawa S, Alves JM, Zhou B, Kobayashi A, Iida T, Mitamura K, Tanabe G, Serrano M, De Guzman A, Cooper P, Buck GA, Hylemon PB. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J Lipid Res 2013;54:2437-49. [PMID: 23772041 DOI: 10.1194/jlr.M038869] [Cited by in Crossref: 104] [Cited by in F6Publishing: 65] [Article Influence: 11.6] [Reference Citation Analysis]
31 Di Ciaula A, Wang DQ, Portincasa P. An update on the pathogenesis of cholesterol gallstone disease. Curr Opin Gastroenterol 2018;34:71-80. [PMID: 29283909 DOI: 10.1097/MOG.0000000000000423] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 12.3] [Reference Citation Analysis]
32 Festa C, De Marino S, Carino A, Sepe V, Marchianò S, Cipriani S, Di Leva FS, Limongelli V, Monti MC, Capolupo A, Distrutti E, Fiorucci S, Zampella A. Targeting Bile Acid Receptors: Discovery of a Potent and Selective Farnesoid X Receptor Agonist as a New Lead in the Pharmacological Approach to Liver Diseases. Front Pharmacol 2017;8:162. [PMID: 28424617 DOI: 10.3389/fphar.2017.00162] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
33 Gu BH, Kim M, Yun CH. Regulation of Gastrointestinal Immunity by Metabolites. Nutrients 2021;13:E167. [PMID: 33430497 DOI: 10.3390/nu13010167] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Keitel V, Kubitz R, Häussinger D. Endocrine and paracrine role of bile acids. World J Gastroenterol 2008; 14(37): 5620-5629 [PMID: 18837077 DOI: 10.3748/wjg.14.5620] [Cited by in CrossRef: 79] [Cited by in F6Publishing: 70] [Article Influence: 5.6] [Reference Citation Analysis]
35 Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CM. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res. 2009;50:1721-1734. [PMID: 19417220 DOI: 10.1194/jlr.r900011-jlr200] [Cited by in Crossref: 182] [Cited by in F6Publishing: 94] [Article Influence: 14.0] [Reference Citation Analysis]
36 Holter MM, Chirikjian MK, Briere DA, Maida A, Sloop KW, Schoonjans K, Cummings BP. Compound 18 Improves Glucose Tolerance in a Hepatocyte TGR5-dependent Manner in Mice. Nutrients 2020;12:E2124. [PMID: 32708970 DOI: 10.3390/nu12072124] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
37 Ibrahim E, Diakonov I, Arunthavarajah D, Swift T, Goodwin M, McIlvride S, Nikolova V, Williamson C, Gorelik J. Bile acids and their respective conjugates elicit different responses in neonatal cardiomyocytes: role of Gi protein, muscarinic receptors and TGR5. Sci Rep. 2018;8:7110. [PMID: 29740092 DOI: 10.1038/s41598-018-25569-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
38 Baghdasaryan A, Claudel T, Gumhold J, Silbert D, Adorini L, Roda A, Vecchiotti S, Gonzalez FJ, Schoonjans K, Strazzabosco M. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO-3 output. Hepatology. 2011;54:1303-1312. [PMID: 22006858 DOI: 10.1002/hep.24537] [Cited by in Crossref: 149] [Cited by in F6Publishing: 131] [Article Influence: 13.5] [Reference Citation Analysis]
39 Li M, Rajani C, Zheng X, Jia W. The microbial metabolome in metabolic‐associated fatty liver disease. Journal of Gastroenterology and Hepatology. [DOI: 10.1111/jgh.15746] [Reference Citation Analysis]
40 McMillin M, DeMorrow S. Effects of bile acids on neurological function and disease. FASEB J 2016;30:3658-68. [PMID: 27468758 DOI: 10.1096/fj.201600275R] [Cited by in Crossref: 58] [Cited by in F6Publishing: 28] [Article Influence: 9.7] [Reference Citation Analysis]
41 Stofan M, Guo GL. Bile Acids and FXR: Novel Targets for Liver Diseases. Front Med (Lausanne) 2020;7:544. [PMID: 33015098 DOI: 10.3389/fmed.2020.00544] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
42 Chiang JYL, Ferrell JM. Bile Acid Metabolism in Liver Pathobiology. Gene Expr. 2018;18:71-87. [PMID: 29325602 DOI: 10.3727/105221618x15156018385515] [Cited by in Crossref: 103] [Cited by in F6Publishing: 58] [Article Influence: 25.8] [Reference Citation Analysis]
43 Brandvold KR, Weaver JM, Whidbey C, Wright AT. A continuous fluorescence assay for simple quantification of bile salt hydrolase activity in the gut microbiome. Sci Rep 2019;9:1359. [PMID: 30718677 DOI: 10.1038/s41598-018-37656-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
44 Fukui H. Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far? Diseases. 2019;7. [PMID: 31726747 DOI: 10.3390/diseases7040058] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 10.3] [Reference Citation Analysis]
45 Simbrunner B, Trauner M, Reiberger T. Review article: therapeutic aspects of bile acid signalling in the gut-liver axis. Aliment Pharmacol Ther 2021;54:1243-62. [PMID: 34555862 DOI: 10.1111/apt.16602] [Reference Citation Analysis]
46 Lieu T, Jayaweera G, Bunnett NW. GPBA: a GPCR for bile acids and an emerging therapeutic target for disorders of digestion and sensation. Br J Pharmacol. 2014;171:1156-1166. [PMID: 24111923 DOI: 10.1111/bph.12426] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
47 Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Chenodeoxycholic acid stimulates Cl(-) secretion via cAMP signaling and increases cystic fibrosis transmembrane conductance regulator phosphorylation in T84 cells. Am J Physiol Cell Physiol. 2013;305:C447-C456. [PMID: 23761628 DOI: 10.1152/ajpcell.00416.2012] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
48 Kowal JM, Haanes KA, Christensen NM, Novak I. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells. Cell Commun Signal 2015;13:28. [PMID: 26050734 DOI: 10.1186/s12964-015-0107-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
49 Selwyn FP, Csanaky IL, Zhang Y, Klaassen CD. Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice. Drug Metab Dispos 2015;43:1544-56. [PMID: 26199423 DOI: 10.1124/dmd.115.065276] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
50 Alemi F, Poole DP, Chiu J, Schoonjans K, Cattaruzza F, Grider JR, Bunnett NW, Corvera CU. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013;144:145-54. [PMID: 23041323 DOI: 10.1053/j.gastro.2012.09.055] [Cited by in Crossref: 159] [Cited by in F6Publishing: 155] [Article Influence: 15.9] [Reference Citation Analysis]
51 Cipriani S, Renga B, D'Amore C, Simonetti M, De Tursi AA, Carino A, Monti MC, Sepe V, Zampella A, Fiorucci S. Impaired Itching Perception in Murine Models of Cholestasis Is Supported by Dysregulation of GPBAR1 Signaling. PLoS One 2015;10:e0129866. [PMID: 26177448 DOI: 10.1371/journal.pone.0129866] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
52 Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol 2018;19:654-72. [PMID: 30104701 DOI: 10.1038/s41580-018-0044-8] [Cited by in Crossref: 115] [Cited by in F6Publishing: 111] [Article Influence: 38.3] [Reference Citation Analysis]
53 Bahne E, Sun EWL, Young RL, Hansen M, Sonne DP, Hansen JS, Rohde U, Liou AP, Jackson ML, de Fontgalland D, Rabbitt P, Hollington P, Sposato L, Due S, Wattchow DA, Rehfeld JF, Holst JJ, Keating DJ, Vilsbøll T, Knop FK. Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes. JCI Insight 2018;3:93936. [PMID: 30518693 DOI: 10.1172/jci.insight.93936] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 8.8] [Reference Citation Analysis]
54 Cao H, Chen ZX, Wang K, Ning MM, Zou QA, Feng Y, Ye YL, Leng Y, Shen JH. Intestinally-targeted TGR5 agonists equipped with quaternary ammonium have an improved hypoglycemic effect and reduced gallbladder filling effect. Sci Rep 2016;6:28676. [PMID: 27339735 DOI: 10.1038/srep28676] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
55 Perides G, Laukkarinen JM, Vassileva G, Steer ML. Biliary acute pancreatitis in mice is mediated by the G-protein-coupled cell surface bile acid receptor Gpbar1. Gastroenterology. 2010;138:715-725. [PMID: 19900448 DOI: 10.1053/j.gastro.2009.10.052] [Cited by in Crossref: 81] [Cited by in F6Publishing: 76] [Article Influence: 6.2] [Reference Citation Analysis]
56 Duboc H, Tolstanova G, Yuan PQ, Wu V, Kaji I, Biraud M, Akiba Y, Kaunitz J, Million M, Tache Y, Larauche M. Reduction of epithelial secretion in male rat distal colonic mucosa by bile acid receptor TGR5 agonist, INT-777: role of submucosal neurons. Neurogastroenterol Motil 2016;28:1663-76. [PMID: 27259385 DOI: 10.1111/nmo.12866] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
57 Li Y, Cao H, Wang X, Guo L, Ding X, Zhao W, Zhang F. Diet-mediated metaorganismal relay biotransformation: health effects and pathways. Crit Rev Food Sci Nutr 2021;:1-19. [PMID: 34802351 DOI: 10.1080/10408398.2021.2004993] [Reference Citation Analysis]
58 Sugita T, Amano K, Nakano M, Masubuchi N, Sugihara M, Matsuura T. Analysis of the serum bile Acid composition for differential diagnosis in patients with liver disease. Gastroenterol Res Pract 2015;2015:717431. [PMID: 25821461 DOI: 10.1155/2015/717431] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
59 Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J. 2006;25:1419-1425. [PMID: 16541101 DOI: 10.1038/sj.emboj.7601049] [Cited by in Crossref: 371] [Cited by in F6Publishing: 344] [Article Influence: 23.2] [Reference Citation Analysis]
60 Roth JD, Feigh M, Veidal SS, Fensholdt LK, Rigbolt KT, Hansen HH, Chen LC, Petitjean M, Friley W, Vrang N, Jelsing J, Young M. INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. World J Gastroenterol 2018; 24(2): 195-210 [PMID: 29375205 DOI: 10.3748/wjg.v24.i2.195] [Cited by in CrossRef: 31] [Cited by in F6Publishing: 27] [Article Influence: 7.8] [Reference Citation Analysis]
61 Reynés B, Palou M, Rodríguez AM, Palou A. Regulation of Adaptive Thermogenesis and Browning by Prebiotics and Postbiotics. Front Physiol 2018;9:1908. [PMID: 30687123 DOI: 10.3389/fphys.2018.01908] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
62 Zhan Y, Wen Y, Zhang LL, Shen XL, Chen XH, Wu XH, Tang XG. Paeoniflorin Improved Constipation in the Loperamide-Induced Rat Model via TGR5/TRPA1 Signaling-Mediated 5-Hydroxytryptamine Secretion. Evid Based Complement Alternat Med 2021;2021:6076293. [PMID: 34925531 DOI: 10.1155/2021/6076293] [Reference Citation Analysis]
63 Shima KR, Ota T, Kato KI, Takeshita Y, Misu H, Kaneko S, Takamura T. Ursodeoxycholic acid potentiates dipeptidyl peptidase-4 inhibitor sitagliptin by enhancing glucagon-like peptide-1 secretion in patients with type 2 diabetes and chronic liver disease: a pilot randomized controlled and add-on study. BMJ Open Diabetes Res Care 2018;6:e000469. [PMID: 29607050 DOI: 10.1136/bmjdrc-2017-000469] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
64 Di Ciaula A, Portincasa P. Recent advances in understanding and managing cholesterol gallstones. F1000Res. 2018;7. [PMID: 30345010 DOI: 10.12688/f1000research.15505.1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
65 Wan MH, Huang W, Latawiec D, Jiang K, Booth DM, Elliott V, Mukherjee R, Xia Q. Review of experimental animal models of biliary acute pancreatitis and recent advances in basic research. HPB (Oxford). 2012;14:73-81. [PMID: 22221567 DOI: 10.1111/j.1477-2574.2011.00408.x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
66 Carino A, Moraca F, Fiorillo B, Marchianò S, Sepe V, Biagioli M, Finamore C, Bozza S, Francisci D, Distrutti E, Catalanotti B, Zampella A, Fiorucci S. Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-synthetic Steroidal Agents Acting on Functional Pockets on the Receptor Binding Domain. Front Chem 2020;8:572885. [PMID: 33195060 DOI: 10.3389/fchem.2020.572885] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
67 Simonen M, Dali-Youcef N, Kaminska D, Venesmaa S, Käkelä P, Pääkkönen M, Hallikainen M, Kolehmainen M, Uusitupa M, Moilanen L. Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass. Obes Surg. 2012;22:1473-1480. [PMID: 22638681 DOI: 10.1007/s11695-012-0673-5] [Cited by in Crossref: 110] [Cited by in F6Publishing: 101] [Article Influence: 12.2] [Reference Citation Analysis]
68 Cipriani S, Mencarelli A, Chini MG, Distrutti E, Renga B, Bifulco G, Baldelli F, Donini A, Fiorucci S. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS One. 2011;6:e25637. [PMID: 22046243 DOI: 10.1371/journal.pone.0025637] [Cited by in Crossref: 187] [Cited by in F6Publishing: 176] [Article Influence: 17.0] [Reference Citation Analysis]
69 Kundu S, Bansal S, Muthukumarasamy KM, Sachidanandan C, Motiani RK, Bajaj A. Deciphering the role of hydrophobic and hydrophilic bile acids in angiogenesis using in vitro and in vivo model systems. Medchemcomm 2017;8:2248-57. [PMID: 30108740 DOI: 10.1039/c7md00475c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
70 Bunnett NW. Neuro-humoral signalling by bile acids and the TGR5 receptor in the gastrointestinal tract. J Physiol 2014;592:2943-50. [PMID: 24614746 DOI: 10.1113/jphysiol.2014.271155] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 6.0] [Reference Citation Analysis]
71 de Boer JF, Verkade E, Mulder NL, de Vries HD, Huijkman N, Koehorst M, Boer T, Wolters JC, Bloks VW, van de Sluis B, Kuipers F. A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice. J Lipid Res 2020;61:291-305. [PMID: 31506275 DOI: 10.1194/jlr.RA119000243] [Cited by in Crossref: 33] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
72 Baars A, Oosting A, Knol J, Garssen J, van Bergenhenegouwen J. The Gut Microbiota as a Therapeutic Target in IBD and Metabolic Disease: A Role for the Bile Acid Receptors FXR and TGR5. Microorganisms 2015;3:641-66. [PMID: 27682110 DOI: 10.3390/microorganisms3040641] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
73 Qi Y, Shi L, Duan G, Ma Y, Li P. Taurochenodeoxycholic Acid Increases cAMP Content via Specially Interacting with Bile Acid Receptor TGR5. Molecules 2021;26:7066. [PMID: 34885648 DOI: 10.3390/molecules26237066] [Reference Citation Analysis]
74 Kwong EK, Li X, Hylemon PB, Zhou H. Sphingosine Kinases/Sphingosine 1-Phosphate Signaling in Hepatic Lipid Metabolism. Curr Pharmacol Rep 2017;3:176-83. [PMID: 29130028 DOI: 10.1007/s40495-017-0093-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
75 Kliewer SA, Mangelsdorf DJ. Bile Acids as Hormones: The FXR-FGF15/19 Pathway. Dig Dis. 2015;33:327-331. [PMID: 26045265 DOI: 10.1159/000371670] [Cited by in Crossref: 183] [Cited by in F6Publishing: 169] [Article Influence: 26.1] [Reference Citation Analysis]
76 Liaset B, Hao Q, Jørgensen H, Hallenborg P, Du ZY, Ma T, Marschall HU, Kruhøffer M, Li R, Li Q, Yde CC, Criales G, Bertram HC, Mellgren G, Ofjord ES, Lock EJ, Espe M, Frøyland L, Madsen L, Kristiansen K. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome. J Biol Chem 2011;286:28382-95. [PMID: 21680746 DOI: 10.1074/jbc.M111.234732] [Cited by in Crossref: 51] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
77 Qi Y, Jiang C, Cheng J, Krausz KW, Li T, Ferrell JM, Gonzalez FJ, Chiang JY. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta. 2015;1851:19-29. [PMID: 24796972 DOI: 10.1016/j.bbalip.2014.04.008] [Cited by in Crossref: 101] [Cited by in F6Publishing: 98] [Article Influence: 12.6] [Reference Citation Analysis]
78 de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17:657-669. [PMID: 23602448 DOI: 10.1016/j.cmet.2013.03.013] [Cited by in Crossref: 478] [Cited by in F6Publishing: 439] [Article Influence: 53.1] [Reference Citation Analysis]
79 Lo SH, Li Y, Cheng KC, Niu CS, Cheng JT, Niu HS. Ursolic acid activates the TGR5 receptor to enhance GLP-1 secretion in type 1-like diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2017;390:1097-104. [PMID: 28756460 DOI: 10.1007/s00210-017-1409-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
80 Li T, Chiang JYL. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr 2020;9:152-69. [PMID: 32355674 DOI: 10.21037/hbsn.2019.09.03] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
81 Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, Pandak WM, Dent P, Spiegel S, Shi R, Xu W, Liu X, Bohdan P, Zhang L, Zhou H, Hylemon PB. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 2012;55:267-76. [PMID: 21932398 DOI: 10.1002/hep.24681] [Cited by in Crossref: 156] [Cited by in F6Publishing: 149] [Article Influence: 14.2] [Reference Citation Analysis]
82 Ullmer C, Alvarez Sanchez R, Sprecher U, Raab S, Mattei P, Dehmlow H, Sewing S, Iglesias A, Beauchamp J, Conde-Knape K. Systemic bile acid sensing by G protein-coupled bile acid receptor 1 (GPBAR1) promotes PYY and GLP-1 release. Br J Pharmacol. 2013;169:671-684. [PMID: 23488746 DOI: 10.1111/bph.12158] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 7.5] [Reference Citation Analysis]
83 Lefort C, Cani PD. The Liver under the Spotlight: Bile Acids and Oxysterols as Pivotal Actors Controlling Metabolism. Cells 2021;10:400. [PMID: 33669184 DOI: 10.3390/cells10020400] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
84 Lieu T, Jayaweera G, Zhao P, Poole DP, Jensen D, Grace M, McIntyre P, Bron R, Wilson YM, Krappitz M, Haerteis S, Korbmacher C, Steinhoff MS, Nassini R, Materazzi S, Geppetti P, Corvera CU, Bunnett NW. The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. Gastroenterology. 2014;147:1417-1428. [PMID: 25194674 DOI: 10.1053/j.gastro.2014.08.042] [Cited by in Crossref: 138] [Cited by in F6Publishing: 124] [Article Influence: 17.3] [Reference Citation Analysis]
85 Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery. Mol Aspects Med 2017;56:75-89. [PMID: 28390813 DOI: 10.1016/j.mam.2017.04.001] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 11.2] [Reference Citation Analysis]
86 Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology. 2017;65:350-362. [PMID: 27358174 DOI: 10.1002/hep.28709] [Cited by in Crossref: 240] [Cited by in F6Publishing: 228] [Article Influence: 40.0] [Reference Citation Analysis]
87 Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011;54:1263-72. [PMID: 21145931 DOI: 10.1016/j.jhep.2010.12.004] [Cited by in Crossref: 227] [Cited by in F6Publishing: 222] [Article Influence: 18.9] [Reference Citation Analysis]
88 Hansen M, Sonne DP, Mikkelsen KH, Gluud LL, Vilsbøll T, Knop FK. Effect of bile acid sequestrants on glycaemic control: protocol for a systematic review with meta-analysis of randomised controlled trials. BMJ Open 2012;2:e001803. [PMID: 23148345 DOI: 10.1136/bmjopen-2012-001803] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
89 Parker HE, Wallis K, le Roux CW, Wong KY, Reimann F, Gribble FM. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. Br J Pharmacol. 2012;165:414-423. [PMID: 21718300 DOI: 10.1111/j.1476-5381.2011.01561.x] [Cited by in Crossref: 143] [Cited by in F6Publishing: 135] [Article Influence: 14.3] [Reference Citation Analysis]
90 Li J, Li T. Bile acid receptors link nutrient sensing to metabolic regulation. Liver Res 2017;1:17-25. [PMID: 29098111 DOI: 10.1016/j.livres.2017.04.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
91 Bertaggia E, Jensen KK, Castro-Perez J, Xu Y, Di Paolo G, Chan RB, Wang L, Haeusler RA. Cyp8b1 ablation prevents Western diet-induced weight gain and hepatic steatosis because of impaired fat absorption. Am J Physiol Endocrinol Metab 2017;313:E121-33. [PMID: 28377401 DOI: 10.1152/ajpendo.00409.2016] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 8.4] [Reference Citation Analysis]
92 Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of Bile Acids in the Regulation of Food Intake, and Their Dysregulation in Metabolic Disease. Nutrients 2021;13:1104. [PMID: 33800566 DOI: 10.3390/nu13041104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
93 De Marino S, Carino A, Masullo D, Finamore C, Marchianò S, Cipriani S, Di Leva FS, Catalanotti B, Novellino E, Limongelli V, Fiorucci S, Zampella A. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists. Sci Rep 2017;7:43290. [PMID: 28233865 DOI: 10.1038/srep43290] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
94 Fu T, Kim YC, Byun S, Kim DH, Seok S, Suino-Powell K, Xu HE, Kemper B, Kemper JK. FXR Primes the Liver for Intestinal FGF15 Signaling by Transient Induction of β-Klotho. Mol Endocrinol 2016;30:92-103. [PMID: 26505219 DOI: 10.1210/me.2015-1226] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
95 Zaborska KE, Cummings BP. Rethinking Bile Acid Metabolism and Signaling for Type 2 Diabetes Treatment. Curr Diab Rep 2018;18:109. [PMID: 30232649 DOI: 10.1007/s11892-018-1092-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
96 Zhang X, Wall M, Sui Z, Kauffman J, Hou C, Chen C, Du F, Kirchner T, Liang Y, Johnson DL, Murray WV, Demarest K. Discovery of Orally Efficacious Tetrahydrobenzimidazoles as TGR5 Agonists for Type 2 Diabetes. ACS Med Chem Lett 2017;8:560-5. [PMID: 28523111 DOI: 10.1021/acsmedchemlett.7b00116] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
97 Holter MM, Chirikjian MK, Govani VN, Cummings BP. TGR5 Signaling in Hepatic Metabolic Health. Nutrients 2020;12:E2598. [PMID: 32859104 DOI: 10.3390/nu12092598] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
98 Kim CH. Immune regulation by microbiome metabolites. Immunology 2018;154:220-9. [PMID: 29569377 DOI: 10.1111/imm.12930] [Cited by in Crossref: 101] [Cited by in F6Publishing: 99] [Article Influence: 25.3] [Reference Citation Analysis]
99 Fan M, Wang X, Xu G, Yan Q, Huang W. Bile acid signaling and liver regeneration. Biochim Biophys Acta 2015;1849:196-200. [PMID: 24878541 DOI: 10.1016/j.bbagrm.2014.05.021] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 6.8] [Reference Citation Analysis]
100 Postler TS, Ghosh S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab 2017;26:110-30. [PMID: 28625867 DOI: 10.1016/j.cmet.2017.05.008] [Cited by in Crossref: 302] [Cited by in F6Publishing: 276] [Article Influence: 60.4] [Reference Citation Analysis]
101 Kriegermeier A, Green R. Pediatric Cholestatic Liver Disease: Review of Bile Acid Metabolism and Discussion of Current and Emerging Therapies. Front Med (Lausanne) 2020;7:149. [PMID: 32432119 DOI: 10.3389/fmed.2020.00149] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
102 Wang LY, Cheng KC, Li Y, Niu CS, Cheng JT, Niu HS. The Dietary Furocoumarin Imperatorin Increases Plasma GLP-1 Levels in Type 1-Like Diabetic Rats. Nutrients 2017;9:E1192. [PMID: 29084156 DOI: 10.3390/nu9111192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
103 Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, Patterson AD, Gonzalez FJ, Chiang JYL. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 2018;68:1574-1588. [PMID: 29486523 DOI: 10.1002/hep.29857] [Cited by in Crossref: 159] [Cited by in F6Publishing: 155] [Article Influence: 39.8] [Reference Citation Analysis]
104 Porez G, Prawitt J, Gross B, Staels B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res. 2012;53:1723-1737. [PMID: 22550135 DOI: 10.1194/jlr.r024794] [Cited by in Crossref: 188] [Cited by in F6Publishing: 91] [Article Influence: 18.8] [Reference Citation Analysis]
105 Rizk MG, Thackray VG. Intersection of Polycystic Ovary Syndrome and the Gut Microbiome. J Endocr Soc 2021;5:bvaa177. [PMID: 33381671 DOI: 10.1210/jendso/bvaa177] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
106 Duboc H, Taché Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis 2014;46:302-12. [PMID: 24411485 DOI: 10.1016/j.dld.2013.10.021] [Cited by in Crossref: 229] [Cited by in F6Publishing: 216] [Article Influence: 28.6] [Reference Citation Analysis]
107 Aldini R, Micucci M, Cevenini M, Fato R, Bergamini C, Nanni C, Cont M, Camborata C, Spinozzi S, Montagnani M, Roda G, D'Errico-Grigioni A, Rosini F, Roda A, Mazzella G, Chiarini A, Budriesi R. Antiinflammatory effect of phytosterols in experimental murine colitis model: prevention, induction, remission study. PLoS One 2014;9:e108112. [PMID: 25268769 DOI: 10.1371/journal.pone.0108112] [Cited by in Crossref: 63] [Cited by in F6Publishing: 54] [Article Influence: 7.9] [Reference Citation Analysis]
108 Zhan K, Zheng H, Li J, Wu H, Qin S, Luo L, Huang S. Gut Microbiota-Bile Acid Crosstalk in Diarrhea-Irritable Bowel Syndrome. Biomed Res Int 2020;2020:3828249. [PMID: 33274207 DOI: 10.1155/2020/3828249] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Watanabe M, Horai Y, Houten SM, Morimoto K, Sugizaki T, Arita E, Mataki C, Sato H, Tanigawara Y, Schoonjans K. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J Biol Chem. 2011;286:26913-26920. [PMID: 21632533 DOI: 10.1074/jbc.m111.248203] [Cited by in Crossref: 166] [Cited by in F6Publishing: 100] [Article Influence: 15.1] [Reference Citation Analysis]
110 Hylemon PB, Takabe K, Dozmorov M, Nagahashi M, Zhou H. Bile acids as global regulators of hepatic nutrient metabolism. Liver Res 2017;1:10-6. [PMID: 29123941 DOI: 10.1016/j.livres.2017.03.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
111 Sato Y, Miyasaka N, Yoshihara Y. Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J Neurosci 2005;25:4889-97. [PMID: 15901770 DOI: 10.1523/JNEUROSCI.0679-05.2005] [Cited by in Crossref: 171] [Cited by in F6Publishing: 85] [Article Influence: 10.7] [Reference Citation Analysis]
112 Wan YY, Sheng L. Regulation of bile acid receptor activity. Liver Res 2018;2:180-5. [PMID: 32280557 DOI: 10.1016/j.livres.2018.09.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
113 Bauset C, Gisbert-Ferrándiz L, Cosín-Roger J. Metabolomics as a Promising Resource Identifying Potential Biomarkers for Inflammatory Bowel Disease. J Clin Med 2021;10:622. [PMID: 33562024 DOI: 10.3390/jcm10040622] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
114 Wang X, Fu X, Van Ness C, Meng Z, Ma X, Huang W. Bile Acid Receptors and Liver Cancer. Curr Pathobiol Rep 2013;1:29-35. [PMID: 23420103 DOI: 10.1007/s40139-012-0003-6] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 4.6] [Reference Citation Analysis]
115 Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile Acids Activated Receptors Regulate Innate Immunity. Front Immunol 2018;9:1853. [PMID: 30150987 DOI: 10.3389/fimmu.2018.01853] [Cited by in Crossref: 123] [Cited by in F6Publishing: 118] [Article Influence: 30.8] [Reference Citation Analysis]
116 Copple BL, Li T. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res. 2016;104:9-21. [PMID: 26706784 DOI: 10.1016/j.phrs.2015.12.007] [Cited by in Crossref: 110] [Cited by in F6Publishing: 98] [Article Influence: 15.7] [Reference Citation Analysis]
117 Wang H, Fang ZZ, Meng R, Cao YF, Tanaka N, Krausz KW, Gonzalez FJ. Glycyrrhizin and glycyrrhetinic acid inhibits alpha-naphthyl isothiocyanate-induced liver injury and bile acid cycle disruption. Toxicology 2017;386:133-42. [PMID: 28549656 DOI: 10.1016/j.tox.2017.05.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
118 Marino S, Finamore C, Biagioli M, Carino A, Marchianò S, Roselli R, Giorgio CD, Bordoni M, Di Leva FS, Novellino E, Cassiano C, Limongelli V, Zampella A, Festa C, Fiorucci S. GPBAR1 Activation by C6-Substituted Hyodeoxycholane Analogues Protect against Colitis. ACS Med Chem Lett 2020;11:818-24. [PMID: 32435390 DOI: 10.1021/acsmedchemlett.9b00636] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
119 Ichikawa R, Takayama T, Yoneno K, Kamada N, Kitazume MT, Higuchi H, Matsuoka K, Watanabe M, Itoh H, Kanai T. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology. 2012;136:153-162. [PMID: 22236403 DOI: 10.1111/j.1365-2567.2012.03554.x] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 6.5] [Reference Citation Analysis]
120 Di Leva FS, Festa C, Carino A, De Marino S, Marchianò S, Di Marino D, Finamore C, Monti MC, Zampella A, Fiorucci S, Limongelli V. Discovery of ((1,2,4-oxadiazol-5-yl)pyrrolidin-3-yl)ureidyl derivatives as selective non-steroidal agonists of the G-protein coupled bile acid receptor-1. Sci Rep 2019;9:2504. [PMID: 30792450 DOI: 10.1038/s41598-019-38840-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
121 Carino A, Marchianò S, Biagioli M, Fiorucci C, Zampella A, Monti MC, Morretta E, Bordoni M, Di Giorgio C, Roselli R, Ricci P, Distrutti E, Fiorucci S. Transcriptome Analysis of Dual FXR and GPBAR1 Agonism in Rodent Model of NASH Reveals Modulation of Lipid Droplets Formation. Nutrients 2019;11:E1132. [PMID: 31117231 DOI: 10.3390/nu11051132] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
122 Donepudi AC, Boehme S, Li F, Chiang JY. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice. Hepatology. 2017;65:813-827. [PMID: 27351453 DOI: 10.1002/hep.28707] [Cited by in Crossref: 64] [Cited by in F6Publishing: 61] [Article Influence: 10.7] [Reference Citation Analysis]
123 Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, Mangelsdorf DJ. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol. 2011;25:1066-1071. [PMID: 21454404 DOI: 10.1210/me.2010-0460] [Cited by in Crossref: 161] [Cited by in F6Publishing: 147] [Article Influence: 14.6] [Reference Citation Analysis]
124 Busnelli M, Manzini S, Chiesa G. The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Nutrients 2019;12:E79. [PMID: 31892152 DOI: 10.3390/nu12010079] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
125 Lee HK, Lee KH, Cho ES. Bile Acid Inhibition of N-type Calcium Channel Currents from Sympathetic Ganglion Neurons. Korean J Physiol Pharmacol 2012;16:25-30. [PMID: 22416216 DOI: 10.4196/kjpp.2012.16.1.25] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
126 Wang XX, Wang D, Luo Y, Myakala K, Dobrinskikh E, Rosenberg AZ, Levi J, Kopp JB, Field A, Hill A. FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity. J Am Soc Nephrol. 2018;29:118-137. [PMID: 29089371 DOI: 10.1681/asn.2017020222] [Cited by in Crossref: 50] [Cited by in F6Publishing: 37] [Article Influence: 10.0] [Reference Citation Analysis]
127 Puccetti M, Xiroudaki S, Ricci M, Giovagnoli S. Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline? Pharmaceutics 2020;12:E624. [PMID: 32635461 DOI: 10.3390/pharmaceutics12070624] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
128 Keating N, Keely SJ. Bile acids in regulation of intestinal physiology. Curr Gastroenterol Rep. 2009;11:375-382. [PMID: 19765365 DOI: 10.1007/s11894-009-0057-8] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 2.4] [Reference Citation Analysis]
129 McMahan RH, Wang XX, Cheng LL, Krisko T, Smith M, El Kasmi K, Pruzanski M, Adorini L, Golden-Mason L, Levi M, Rosen HR. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem. 2013;288:11761-11770. [PMID: 23460643 DOI: 10.1074/jbc.m112.446575] [Cited by in Crossref: 137] [Cited by in F6Publishing: 74] [Article Influence: 15.2] [Reference Citation Analysis]
130 Samant H, Manatsathit W, Dies D, Shokouh-Amiri H, Zibari G, Boktor M, Alexander JS. Cholestatic liver diseases: An era of emerging therapies. World J Clin Cases 2019; 7(13): 1571-1581 [PMID: 31367616 DOI: 10.12998/wjcc.v7.i13.1571] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
131 Sabbatini P, Filipponi P, Sardella R, Natalini B, Nuti R, Macchiarulo A, Pellicciari R, Gioiello A. Synthesis and quantitative structure-property relationships of side chain-modified hyodeoxycholic acid derivatives. Molecules 2013;18:10497-513. [PMID: 23999724 DOI: 10.3390/molecules180910497] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
132 Fukui H. Gut Microbiota and Host Reaction in Liver Diseases. Microorganisms. 2015;3:759-791. [PMID: 27682116 DOI: 10.3390/microorganisms3040759] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 3.1] [Reference Citation Analysis]
133 Hu MM, He WR, Gao P, Yang Q, He K, Cao LB, Li S, Feng YQ, Shu HB. Virus-induced accumulation of intracellular bile acids activates the TGR5-β-arrestin-SRC axis to enable innate antiviral immunity. Cell Res 2019;29:193-205. [PMID: 30651583 DOI: 10.1038/s41422-018-0136-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
134 Sonne DP, Lund A, Faber J, Holst JJ, Vilsbøll T, Knop FK. On the role of gallbladder emptying and incretin hormones for nutrient-mediated TSH suppression in patients with type 2 diabetes. Endocr Connect 2014;3:193-9. [PMID: 25277744 DOI: 10.1530/EC-14-0088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
135 Watanabe M, Morimoto K, Houten SM, Kaneko-Iwasaki N, Sugizaki T, Horai Y, Mataki C, Sato H, Murahashi K, Arita E. Bile acid binding resin improves metabolic control through the induction of energy expenditure. PLoS One. 2012;7:e38286. [PMID: 22952571 DOI: 10.1371/journal.pone.0038286pone-d-11-16446] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
136 Russell DW. Fifty years of advances in bile acid synthesis and metabolism. J Lipid Res. 2009;50 Suppl:S120-S125. [PMID: 18815433 DOI: 10.1194/jlr.r800026-jlr200] [Cited by in Crossref: 199] [Cited by in F6Publishing: 116] [Article Influence: 14.2] [Reference Citation Analysis]
137 Kumar DP, Asgharpour A, Mirshahi F, Park SH, Liu S, Imai Y, Nadler JL, Grider JR, Murthy KS, Sanyal AJ. Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis. J Biol Chem 2016;291:6626-40. [PMID: 26757816 DOI: 10.1074/jbc.M115.699504] [Cited by in Crossref: 57] [Cited by in F6Publishing: 29] [Article Influence: 9.5] [Reference Citation Analysis]
138 Vassileva G, Golovko A, Markowitz L, Abbondanzo SJ, Zeng M, Yang S, Hoos L, Tetzloff G, Levitan D, Murgolo NJ. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem J. 2006;398:423-430. [PMID: 16724960 DOI: 10.1042/bj20060537] [Cited by in Crossref: 190] [Cited by in F6Publishing: 87] [Article Influence: 11.9] [Reference Citation Analysis]
139 Pathak P, Chiang JYL. Sterol 12α-Hydroxylase Aggravates Dyslipidemia by Activating the Ceramide/mTORC1/SREBP-1C Pathway via FGF21 and FGF15. Gene Expr 2019;19:161-73. [PMID: 30890204 DOI: 10.3727/105221619X15529371970455] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
140 Staels B, Handelsman Y, Fonseca V. Bile acid sequestrants for lipid and glucose control. Curr Diab Rep 2010;10:70-7. [PMID: 20425070 DOI: 10.1007/s11892-009-0087-5] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 3.8] [Reference Citation Analysis]
141 Hov JR, Keitel V, Laerdahl JK, Spomer L, Ellinghaus E, ElSharawy A, Melum E, Boberg KM, Manke T, Balschun T, Schramm C, Bergquist A, Weismüller T, Gotthardt D, Rust C, Henckaerts L, Onnie CM, Weersma RK, Sterneck M, Teufel A, Runz H, Stiehl A, Ponsioen CY, Wijmenga C, Vatn MH, Stokkers PC, Vermeire S, Mathew CG, Lie BA, Beuers U, Manns MP, Schreiber S, Schrumpf E, Häussinger D, Franke A, Karlsen TH; IBSEN Study Group. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS One 2010;5:e12403. [PMID: 20811628 DOI: 10.1371/journal.pone.0012403] [Cited by in Crossref: 85] [Cited by in F6Publishing: 76] [Article Influence: 7.1] [Reference Citation Analysis]
142 Tejpal S, Wemyss AM, Bastie CC, Klein-Seetharaman J. Lemon Extract Reduces Angiotensin Converting Enzyme (ACE) Expression and Activity and Increases Insulin Sensitivity and Lipolysis in Mouse Adipocytes. Nutrients 2020;12:E2348. [PMID: 32781523 DOI: 10.3390/nu12082348] [Reference Citation Analysis]
143 Cai SY, Boyer JL. The role of bile acids in cholestatic liver injury. Ann Transl Med 2021;9:737. [PMID: 33987435 DOI: 10.21037/atm-20-5110] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
144 Kang JH, Kim M, Yim M. FXR/TGR5 mediates inflammasome activation and host resistance to bacterial infection. Biochem Biophys Rep 2021;27:101051. [PMID: 34179517 DOI: 10.1016/j.bbrep.2021.101051] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
145 Haring E, Uhl FM, Andrieux G, Proietti M, Bulashevska A, Sauer B, Braun LM, de Vega Gomez E, Esser PR, Martin SF, Pfeifer D, Follo M, Schmitt-Graeff A, Buescher J, Duyster J, Grimbacher B, Boerries M, Pearce EL, Zeiser R, Apostolova P. Bile acids regulate intestinal antigen presentation and reduce graft-versus-host disease without impairing the graft-versus-leukemia effect. Haematologica 2021;106:2131-46. [PMID: 32675222 DOI: 10.3324/haematol.2019.242990] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
146 Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5: a valuable metabolic target. Dig Dis. 2011;29:37-44. [PMID: 21691102 DOI: 10.1159/000324126] [Cited by in Crossref: 74] [Cited by in F6Publishing: 72] [Article Influence: 6.7] [Reference Citation Analysis]
147 Masyuk AI, Huang BQ, Radtke BN, Gajdos GB, Splinter PL, Masyuk TV, Gradilone SA, LaRusso NF. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am J Physiol Gastrointest Liver Physiol 2013;304:G1013-24. [PMID: 23578785 DOI: 10.1152/ajpgi.00383.2012] [Cited by in Crossref: 71] [Cited by in F6Publishing: 63] [Article Influence: 7.9] [Reference Citation Analysis]
148 Ma H, Patti ME. Bile acids, obesity, and the metabolic syndrome. Best Pract Res Clin Gastroenterol 2014;28:573-83. [PMID: 25194176 DOI: 10.1016/j.bpg.2014.07.004] [Cited by in Crossref: 88] [Cited by in F6Publishing: 84] [Article Influence: 11.0] [Reference Citation Analysis]
149 Rao J, Yang C, Yang S, Lu H, Hu Y, Lu L, Cheng F, Wang X. Deficiency of TGR5 exacerbates immune-mediated cholestatic hepatic injury by stabilizing the β-catenin destruction complex. Int Immunol 2020;32:321-34. [PMID: 31930324 DOI: 10.1093/intimm/dxaa002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
150 Li L, Liu C, Mao W, Tumen B, Li P. Taurochenodeoxycholic Acid Inhibited AP-1 Activation via Stimulating Glucocorticoid Receptor. Molecules 2019;24:E4513. [PMID: 31835494 DOI: 10.3390/molecules24244513] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
151 Keitel V, Reich M, Häussinger D. TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis? Clin Rev Allergy Immunol 2015;48:218-25. [PMID: 25138774 DOI: 10.1007/s12016-014-8443-x] [Cited by in F6Publishing: 28] [Reference Citation Analysis]
152 Xu G, Song M. Recent advances in the mechanisms underlying the beneficial effects of bariatric and metabolic surgery. Surg Obes Relat Dis. 2021;17:231-238. [PMID: 33036939 DOI: 10.1016/j.soard.2020.08.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
153 Peleman C, Camilleri M, Busciglio I, Burton D, Donato L, Zinsmeister AR. Colonic Transit and Bile Acid Synthesis or Excretion in Patients With Irritable Bowel Syndrome-Diarrhea Without Bile Acid Malabsorption. Clin Gastroenterol Hepatol 2017;15:720-727.e1. [PMID: 27856362 DOI: 10.1016/j.cgh.2016.11.012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
154 Bukiya AN, McMillan JE, Fedinec AL, Patil SA, Miller DD, Leffler CW, Parrill AL, Dopico AM. Cerebrovascular dilation via selective targeting of the cholane steroid-recognition site in the BK channel β1-subunit by a novel nonsteroidal agent. Mol Pharmacol 2013;83:1030-44. [PMID: 23455312 DOI: 10.1124/mol.112.083519] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
155 DeMorrow S. Bile Acids in Hepatic Encephalopathy. J Clin Exp Hepatol 2019;9:117-24. [PMID: 30774268 DOI: 10.1016/j.jceh.2018.04.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
156 Ahmad TR, Higuchi S, Bertaggia E, Hung A, Shanmugarajah N, Guilz NC, Gamarra JR, Haeusler RA. Bile acid composition regulates the manganese transporter Slc30a10 in intestine. J Biol Chem 2020;295:12545-58. [PMID: 32690612 DOI: 10.1074/jbc.RA120.012792] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
157 Fiorucci S, Carino A, Baldoni M, Santucci L, Costanzi E, Graziosi L, Distrutti E, Biagioli M. Bile Acid Signaling in Inflammatory Bowel Diseases. Dig Dis Sci 2021;66:674-93. [PMID: 33289902 DOI: 10.1007/s10620-020-06715-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
158 Grüner N, Mattner J. Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver-Gut Axis. Int J Mol Sci 2021;22:1397. [PMID: 33573273 DOI: 10.3390/ijms22031397] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
159 Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167-177. [PMID: 19723493 DOI: 10.1016/j.cmet.2009.08.001] [Cited by in Crossref: 1041] [Cited by in F6Publishing: 971] [Article Influence: 80.1] [Reference Citation Analysis]
160 Gasaly N, de Vos P, Hermoso MA. Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Front Immunol 2021;12:658354. [PMID: 34122415 DOI: 10.3389/fimmu.2021.658354] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
161 Kong B, Sun R, Huang M, Chow MD, Zhong XB, Xie W, Lee YH, Guo GL. Fibroblast Growth Factor 15-Dependent and Bile Acid-Independent Promotion of Liver Regeneration in Mice. Hepatology. 2018;68:1961-1976. [PMID: 29672888 DOI: 10.1002/hep.30041] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
162 Watanabe M, Morimoto K, Houten SM, Kaneko-Iwasaki N, Sugizaki T, Horai Y, Mataki C, Sato H, Murahashi K, Arita E, Schoonjans K, Suzuki T, Itoh H, Auwerx J. Bile acid binding resin improves metabolic control through the induction of energy expenditure. PLoS One 2012;7:e38286. [PMID: 22952571 DOI: 10.1371/journal.pone.0038286] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 7.6] [Reference Citation Analysis]
163 Poole DP, Godfrey C, Cattaruzza F, Cottrell GS, Kirkland JG, Pelayo JC, Bunnett NW, Corvera CU. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil. 2010;22:814-825, e227-228. [PMID: 20236244 DOI: 10.1111/j.1365-2982.2010.01487.x] [Cited by in Crossref: 137] [Cited by in F6Publishing: 136] [Article Influence: 11.4] [Reference Citation Analysis]
164 Pang C, LaLonde A, Godfrey TE, Que J, Sun J, Wu TT, Zhou Z. Bile salt receptor TGR5 is highly expressed in esophageal adenocarcinoma and precancerous lesions with significantly worse overall survival and gender differences. Clin Exp Gastroenterol 2017;10:29-37. [PMID: 28223834 DOI: 10.2147/CEG.S117842] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
165 Kim YJ, Park YS, Shin CM, Han K, Park SH, Yoon H, Kim N, Lee DH. Risk of Heart Disease after Cholecystectomy: A Nationwide Population-Based Cohort Study in South Korea. J Clin Med 2021;10:3253. [PMID: 34362037 DOI: 10.3390/jcm10153253] [Reference Citation Analysis]
166 Rizzo G, Passeri D, De Franco F, Ciaccioli G, Donadio L, Rizzo G, Orlandi S, Sadeghpour B, Wang XX, Jiang T, Levi M, Pruzanski M, Adorini L. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol. 2010;78:617-630. [PMID: 20631053 DOI: 10.1124/mol.110.064501] [Cited by in Crossref: 118] [Cited by in F6Publishing: 117] [Article Influence: 9.8] [Reference Citation Analysis]
167 Ding L, Yang L, Wang Z, Huang W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B. 2015;5:135-144. [PMID: 26579439 DOI: 10.1016/j.apsb.2015.01.004] [Cited by in Crossref: 133] [Cited by in F6Publishing: 125] [Article Influence: 19.0] [Reference Citation Analysis]
168 Hansen M, Sonne DP, Knop FK. Bile acid sequestrants: glucose-lowering mechanisms and efficacy in type 2 diabetes. Curr Diab Rep. 2014;14:482. [PMID: 24623198 DOI: 10.1007/s11892-014-0482-4] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
169 Luxenburger A, Harris LD, Ure EM, Landaeta Aponte RA, Woolhouse AD, Cameron SA, Ling CD, Piltz RO, Lewis AR, Gainsford GJ, Weymouth-Wilson A, Furneaux RH. Synthesis of 12β-Methyl-18-nor-bile Acids. ACS Omega 2021;6:25019-39. [PMID: 34604682 DOI: 10.1021/acsomega.1c04199] [Reference Citation Analysis]
170 Smith NJ. Low affinity GPCRs for metabolic intermediates: challenges for pharmacologists. Front Endocrinol (Lausanne) 2012;3:1. [PMID: 22649402 DOI: 10.3389/fendo.2012.00001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
171 Jiang L, Schnabl B. Gut Microbiota in Liver Disease: What Do We Know and What Do We Not Know? Physiology (Bethesda) 2020;35:261-74. [PMID: 32490750 DOI: 10.1152/physiol.00005.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
172 Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol. 2013;58:155-168. [PMID: 22885388 DOI: 10.1016/j.jhep.2012.08.002] [Cited by in Crossref: 228] [Cited by in F6Publishing: 210] [Article Influence: 22.8] [Reference Citation Analysis]
173 Chiang JYL. Bile acid metabolism and signaling in liver disease and therapy. Liver Res 2017;1:3-9. [PMID: 29104811 DOI: 10.1016/j.livres.2017.05.001] [Cited by in Crossref: 94] [Cited by in F6Publishing: 85] [Article Influence: 18.8] [Reference Citation Analysis]
174 Jain AK, le Roux CW, Puri P, Tavakkoli A, Gletsu-Miller N, Laferrère B, Kellermayer R, DiBaise JK, Martindale RG, Wolfe BM. Proceedings of the 2017 ASPEN Research Workshop-Gastric Bypass: Role of the Gut. JPEN J Parenter Enteral Nutr 2018;42:279-95. [PMID: 29443403 DOI: 10.1002/jpen.1121] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
175 Macchiarulo A, Gioiello A, Thomas C, Pols TW, Nuti R, Ferrari C, Giacchè N, De Franco F, Pruzanski M, Auwerx J, Schoonjans K, Pellicciari R. Probing the Binding Site of Bile Acids in TGR5. ACS Med Chem Lett 2013;4:1158-62. [PMID: 24900622 DOI: 10.1021/ml400247k] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
176 Zhang H, Xu H, Zhang C, Tang Q, Bi F. Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis. Cell Death Discov 2021;7:207. [PMID: 34365464 DOI: 10.1038/s41420-021-00589-8] [Reference Citation Analysis]
177 Kong B, Zhang M, Huang M, Rizzolo D, Armstrong LE, Schumacher JD, Chow MD, Lee YH, Guo GL. FXR deficiency alters bile acid pool composition and exacerbates chronic alcohol induced liver injury. Dig Liver Dis 2019;51:570-6. [PMID: 30803859 DOI: 10.1016/j.dld.2018.12.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
178 Yoneno K, Hisamatsu T, Shimamura K, Kamada N, Ichikawa R, Kitazume MT, Mori M, Uo M, Namikawa Y, Matsuoka K, Sato T, Koganei K, Sugita A, Kanai T, Hibi T. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease. Immunology. 2013;139:19-29. [PMID: 23566200 DOI: 10.1111/imm.12045] [Cited by in Crossref: 94] [Cited by in F6Publishing: 91] [Article Influence: 10.4] [Reference Citation Analysis]
179 Zhou H, Zhou S, Gao J, Zhang G, Lu Y, Owyang C. Upregulation of bile acid receptor TGR5 and nNOS in gastric myenteric plexus is responsible for delayed gastric emptying after chronic high-fat feeding in rats. Am J Physiol Gastrointest Liver Physiol 2015;308:G863-73. [PMID: 25540233 DOI: 10.1152/ajpgi.00380.2014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
180 Asgharpour A, Kumar D, Sanyal A. Bile acids: emerging role in management of liver diseases. Hepatol Int. 2015;9:527-533. [PMID: 26320013 DOI: 10.1007/s12072-015-9656-7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
181 Swanson HI, Wada T, Xie W, Renga B, Zampella A, Distrutti E, Fiorucci S, Kong B, Thomas AM, Guo GL. Role of nuclear receptors in lipid dysfunction and obesity-related diseases. Drug Metab Dispos. 2013;41:1-11. [PMID: 23043185 DOI: 10.1124/dmd.112.048694] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
182 Ovadia C, Perdones-Montero A, Fan HM, Mullish BH, McDonald JAK, Papacleovoulou G, Wahlström A, Ståhlman M, Tsakmaki A, Clarke LCD, Sklavounos A, Dixon PH, Bewick GA, Walters JRF, Marschall HU, Marchesi JR, Williamson C. Ursodeoxycholic acid enriches intestinal bile salt hydrolase-expressing Bacteroidetes in cholestatic pregnancy. Sci Rep 2020;10:3895. [PMID: 32127609 DOI: 10.1038/s41598-020-60821-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
183 Jensen DD, Godfrey CB, Niklas C, Canals M, Kocan M, Poole DP, Murphy JE, Alemi F, Cottrell GS, Korbmacher C, Lambert NA, Bunnett NW, Corvera CU. The bile acid receptor TGR5 does not interact with β-arrestins or traffic to endosomes but transmits sustained signals from plasma membrane rafts. J Biol Chem 2013;288:22942-60. [PMID: 23818521 DOI: 10.1074/jbc.M113.455774] [Cited by in Crossref: 67] [Cited by in F6Publishing: 41] [Article Influence: 7.4] [Reference Citation Analysis]
184 Chiang JY, Pathak P, Liu H, Donepudi A, Ferrell J, Boehme S. Intestinal Farnesoid X Receptor and Takeda G Protein Couple Receptor 5 Signaling in Metabolic Regulation. Dig Dis 2017;35:241-5. [PMID: 28249273 DOI: 10.1159/000450981] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 5.2] [Reference Citation Analysis]
185 Briere DA, Ruan X, Cheng CC, Siesky AM, Fitch TE, Dominguez C, Sanfeliciano SG, Montero C, Suen CS, Xu Y, Coskun T, Michael MD. Novel Small Molecule Agonist of TGR5 Possesses Anti-Diabetic Effects but Causes Gallbladder Filling in Mice. PLoS One 2015;10:e0136873. [PMID: 26312995 DOI: 10.1371/journal.pone.0136873] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
186 Sasaki T, Kuboyama A, Mita M, Murata S, Shimizu M, Inoue J, Mori K, Sato R. The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J Biol Chem 2018;293:10322-32. [PMID: 29773650 DOI: 10.1074/jbc.RA118.002733] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
187 Chen X, Yan L, Guo Z, Chen Y, Li M, Huang C, Chen Z, Meng X. Chenodeoxycholic acid attenuates high-fat diet-induced obesity and hyperglycemia via the G protein-coupled bile acid receptor 1 and proliferator-activated receptor γ pathway. Exp Ther Med 2017;14:5305-12. [PMID: 29285057 DOI: 10.3892/etm.2017.5232] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
188 Ghallab A. TGR5 regulates portal perfusion pressure of the liver. EXCLI J 2019;18:1107-8. [PMID: 31938032 DOI: 10.17179/excli2019-2077] [Reference Citation Analysis]
189 Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J. Bile acids: Chemistry, physiology, and pathophysiology. World J Gastroenterol 2009; 15(7): 804-816 [PMID: 19230041 DOI: 10.3748/wjg.15.804] [Cited by in CrossRef: 309] [Cited by in F6Publishing: 268] [Article Influence: 23.8] [Reference Citation Analysis]
190 Zhang L, Huang X, Meng Z, Dong B, Shiah S, Moore DD, Huang W. Significance and mechanism of CYP7a1 gene regulation during the acute phase of liver regeneration. Mol Endocrinol 2009;23:137-45. [PMID: 19056864 DOI: 10.1210/me.2008-0198] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 3.5] [Reference Citation Analysis]
191 Kaska L, Sledzinski T, Chomiczewska A, Dettlaff-Pokora A, Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol 2016; 22(39): 8698-8719 [PMID: 27818587 DOI: 10.3748/wjg.v22.i39.8698] [Cited by in CrossRef: 59] [Cited by in F6Publishing: 47] [Article Influence: 9.8] [Reference Citation Analysis]
192 Ding L, Sousa KM, Jin L, Dong B, Kim BW, Ramirez R, Xiao Z, Gu Y, Yang Q, Wang J, Yu D, Pigazzi A, Schones D, Yang L, Moore D, Wang Z, Huang W. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice. Hepatology. 2016;64:760-773. [PMID: 27312543 DOI: 10.1002/hep.28689] [Cited by in Crossref: 95] [Cited by in F6Publishing: 96] [Article Influence: 15.8] [Reference Citation Analysis]
193 Mukaisho K, Araki Y, Sugihara H, Tanaka H, Chen KH, Hattori T. High serum bile acids cause hyperthyroidism and goiter. Dig Dis Sci 2008;53:1411-6. [PMID: 17932765 DOI: 10.1007/s10620-007-0017-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
194 Chang KO, Sosnovtsev SV, Belliot G, Kim Y, Saif LJ, Green KY. Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc Natl Acad Sci U S A 2004;101:8733-8. [PMID: 15161971 DOI: 10.1073/pnas.0401126101] [Cited by in Crossref: 109] [Cited by in F6Publishing: 93] [Article Influence: 6.1] [Reference Citation Analysis]
195 Pathak P, Liu H, Boehme S, Xie C, Krausz KW, Gonzalez F, Chiang JYL. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. J Biol Chem 2017;292:11055-69. [PMID: 28478385 DOI: 10.1074/jbc.M117.784322] [Cited by in Crossref: 97] [Cited by in F6Publishing: 69] [Article Influence: 19.4] [Reference Citation Analysis]
196 Goldberg AA, Beach A, Davies GF, Harkness TA, Leblanc A, Titorenko VI. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget 2011;2:761-82. [PMID: 21992775 DOI: 10.18632/oncotarget.338] [Cited by in Crossref: 58] [Cited by in F6Publishing: 47] [Article Influence: 5.8] [Reference Citation Analysis]
197 Pols TW, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas C, Rizzo G, Gioiello A, Adorini L, Pellicciari R, Auwerx J, Schoonjans K. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 2011;14:747-757. [PMID: 22152303 DOI: 10.1016/j.cmet.2011.11.006] [Cited by in Crossref: 303] [Cited by in F6Publishing: 286] [Article Influence: 30.3] [Reference Citation Analysis]
198 Zhang JH, Nolan JD, Kennie SL, Johnston IM, Dew T, Dixon PH, Williamson C, Walters JR. Potent stimulation of fibroblast growth factor 19 expression in the human ileum by bile acids. Am J Physiol Gastrointest Liver Physiol 2013;304:G940-8. [PMID: 23518683 DOI: 10.1152/ajpgi.00398.2012] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 7.0] [Reference Citation Analysis]
199 Finamore C, Baronissi G, Marchianò S, Di Leva FS, Carino A, Monti MC, Limongelli V, Zampella A, Fiorucci S, Sepe V. Introduction of Nonacidic Side Chains on 6-Ethylcholane Scaffolds in the Identification of Potent Bile Acid Receptor Agonists with Improved Pharmacokinetic Properties. Molecules 2019;24:E1043. [PMID: 30884797 DOI: 10.3390/molecules24061043] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
200 Yeh CF, Chen YH, Liu SF, Kao HL, Wu MS, Yang KC, Wu WK. Mutual Interplay of Host Immune System and Gut Microbiota in the Immunopathology of Atherosclerosis. Int J Mol Sci 2020;21:E8729. [PMID: 33227973 DOI: 10.3390/ijms21228729] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
201 Spomer L, Gertzen CG, Schmitz B, Häussinger D, Gohlke H, Keitel V. A membrane-proximal, C-terminal α-helix is required for plasma membrane localization and function of the G Protein-coupled receptor (GPCR) TGR5. J Biol Chem 2014;289:3689-702. [PMID: 24338481 DOI: 10.1074/jbc.M113.502344] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
202 Ma SY, Ning MM, Zou QA, Feng Y, Ye YL, Shen JH, Leng Y. OL3, a novel low-absorbed TGR5 agonist with reduced side effects, lowered blood glucose via dual actions on TGR5 activation and DPP-4 inhibition. Acta Pharmacol Sin 2016;37:1359-69. [PMID: 27264313 DOI: 10.1038/aps.2016.27] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
203 Abedin SA, Thorne JL, Battaglia S, Maguire O, Hornung LB, Doherty AP, Mills IG, Campbell MJ. Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells. Carcinogenesis 2009;30:449-56. [PMID: 19126649 DOI: 10.1093/carcin/bgp005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 2.9] [Reference Citation Analysis]
204 Cariou B, Chetiveaux M, Zaïr Y, Pouteau E, Disse E, Guyomarc'h-Delasalle B, Laville M, Krempf M. Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults. Nutr Metab (Lond). 2011;8:48. [PMID: 21736725 DOI: 10.1186/1743-7075-8-48] [Cited by in Crossref: 61] [Cited by in F6Publishing: 67] [Article Influence: 5.5] [Reference Citation Analysis]
205 Di Leva FS, Festa C, Renga B, Sepe V, Novellino E, Fiorucci S, Zampella A, Limongelli V. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism. Sci Rep 2015;5:16605. [PMID: 26567894 DOI: 10.1038/srep16605] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
206 Romanazzi T, Zanella D, Cheng MH, Smith B, Carter AM, Galli A, Bahar I, Bossi E. Bile Acids Gate Dopamine Transporter Mediated Currents. Front Chem 2021;9:753990. [PMID: 34957043 DOI: 10.3389/fchem.2021.753990] [Reference Citation Analysis]
207 Iguchi Y, Yamaguchi M, Sato H, Kihira K, Nishimaki-Mogami T, Une M. Bile alcohols function as the ligands of membrane-type bile acid-activated G protein-coupled receptor. J Lipid Res 2010;51:1432-41. [PMID: 20023205 DOI: 10.1194/jlr.M004051] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
208 Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, Liew WC, Mpamhanga CP, Bonner TI, Neubig RR. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev. 2013;65:967-986. [PMID: 23686350 DOI: 10.1124/pr.112.007179] [Cited by in Crossref: 178] [Cited by in F6Publishing: 169] [Article Influence: 19.8] [Reference Citation Analysis]
209 Chiang JYL, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res 2020;4:47-63. [PMID: 34290896 DOI: 10.1016/j.livres.2020.05.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
210 Wang XY, Zhang SY, Li J, Liu HN, Xie X, Nan FJ. Highly lipophilic 3-epi-betulinic acid derivatives as potent and selective TGR5 agonists with improved cellular efficacy. Acta Pharmacol Sin 2014;35:1463-72. [PMID: 25283506 DOI: 10.1038/aps.2014.97] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
211 Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinskikh E, Lucia S, Adorini L, D'Agati VD, Levi J, Rosenberg A, Kopp JB, Gius DR, Saleem MA, Levi M. G Protein-Coupled Bile Acid Receptor TGR5 Activation Inhibits Kidney Disease in Obesity and Diabetes. J Am Soc Nephrol 2016;27:1362-78. [PMID: 26424786 DOI: 10.1681/ASN.2014121271] [Cited by in Crossref: 59] [Cited by in F6Publishing: 43] [Article Influence: 8.4] [Reference Citation Analysis]
212 Horváth G, Egyed O, Tang C, Kovács M, Micsonai A, Kardos J, Toke O. Ligand entry in human ileal bile acid-binding protein is mediated by histidine protonation. Sci Rep 2019;9:4825. [PMID: 30886237 DOI: 10.1038/s41598-019-41180-7] [Reference Citation Analysis]
213 Prawitt J, Caron S, Staels B. Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr Diab Rep. 2011;11:160-166. [PMID: 21431855 DOI: 10.1007/s11892-011-0187-x] [Cited by in Crossref: 149] [Cited by in F6Publishing: 134] [Article Influence: 13.5] [Reference Citation Analysis]
214 Li Y, Faden HS, Zhu L. The Response of the Gut Microbiota to Dietary Changes in the First Two Years of Life. Front Pharmacol 2020;11:334. [PMID: 32256372 DOI: 10.3389/fphar.2020.00334] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
215 Monteiro-Cardoso VF, Corlianò M, Singaraja RR. Bile Acids: A Communication Channel in the Gut-Brain Axis. Neuromolecular Med 2021;23:99-117. [PMID: 33085065 DOI: 10.1007/s12017-020-08625-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
216 Cheng Z, Liu G, Zhang X, Bi D, Hu S. Improvement of Glucose Metabolism Following Long-Term Taurocholic Acid Gavage in a Diabetic Rat Model. Med Sci Monit 2018;24:7206-12. [PMID: 30298865 DOI: 10.12659/MSM.912429] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
217 Nie B, Park HM, Kazantzis M, Lin M, Henkin A, Ng S, Song S, Chen Y, Tran H, Lai R, Her C, Maher JJ, Forman BM, Stahl A. Specific bile acids inhibit hepatic fatty acid uptake in mice. Hepatology 2012;56:1300-10. [PMID: 22531947 DOI: 10.1002/hep.25797] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 4.0] [Reference Citation Analysis]
218 Silpe JE, Balskus EP. Deciphering Human Microbiota-Host Chemical Interactions. ACS Cent Sci 2021;7:20-9. [PMID: 33532566 DOI: 10.1021/acscentsci.0c01030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
219 Sepe V, Festa C, Renga B, Carino A, Cipriani S, Finamore C, Masullo D, Del Gaudio F, Monti MC, Fiorucci S, Zampella A. Insights on FXR selective modulation. Speculation on bile acid chemical space in the discovery of potent and selective agonists. Sci Rep 2016;6:19008. [PMID: 26740187 DOI: 10.1038/srep19008] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
220 Morimoto K, Itoh H, Watanabe M. Developments in understanding bile acid metabolism. Expert Rev Endocrinol Metab 2013;8:59-69. [PMID: 30731653 DOI: 10.1586/eem.12.75] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
221 Jia L, Ma Y, Haywood J, Jiang L, Xue B, Shi H, Dawson PA, Yu L. NPC1L1 Deficiency Suppresses Ileal Fibroblast Growth Factor 15 Expression and Increases Bile Acid Pool Size in High-Fat-Diet-Fed Mice. Cells 2021;10:3468. [DOI: 10.3390/cells10123468] [Reference Citation Analysis]
222 Zaborska KE, Lee SA, Garribay D, Cha E, Cummings BP. Deoxycholic acid supplementation impairs glucose homeostasis in mice. PLoS One 2018;13:e0200908. [PMID: 30059528 DOI: 10.1371/journal.pone.0200908] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
223 Zambad SP, Tuli D, Mathur A, Ghalsasi SA, Chaudhary AR, Deshpande S, Gupta RC, Chauthaiwale V, Dutt C. TRC210258, a novel TGR5 agonist, reduces glycemic and dyslipidemic cardiovascular risk in animal models of diabesity. Diabetes Metab Syndr Obes 2013;7:1-14. [PMID: 24379686 DOI: 10.2147/DMSO.S50209] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
224 Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res. 2009;50:1509-1520. [PMID: 19346331 DOI: 10.1194/jlr.r900007-jlr200] [Cited by in Crossref: 418] [Cited by in F6Publishing: 234] [Article Influence: 32.2] [Reference Citation Analysis]
225 Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 2014;66:948-83. [PMID: 25073467 DOI: 10.1124/pr.113.008201] [Cited by in Crossref: 402] [Cited by in F6Publishing: 380] [Article Influence: 57.4] [Reference Citation Analysis]
226 Hegade VS, Speight RA, Etherington RE, Jones DE. Novel bile acid therapeutics for the treatment of chronic liver diseases. Therap Adv Gastroenterol 2016;9:376-91. [PMID: 27134666 DOI: 10.1177/1756283X16630712] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
227 Xiong F, Li X, Yang Z, Wang Y, Gong W, Huang J, Chen C, Liu P, Huang H. TGR5 suppresses high glucose-induced upregulation of fibronectin and transforming growth factor-β1 in rat glomerular mesangial cells by inhibiting RhoA/ROCK signaling. Endocrine 2016;54:657-70. [PMID: 27470217 DOI: 10.1007/s12020-016-1032-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
228 Melhem H, Kaya B, Ayata CK, Hruz P, Niess JH. Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells. 2019;8. [PMID: 31091682 DOI: 10.3390/cells8050450] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
229 Seroka B, Łotowski Z, Hryniewicka A, Rárová L, R Sicinski R, M Tomkiel A, W Morzycki J. Synthesis of New Cisplatin Derivatives from Bile Acids. Molecules 2020;25:E655. [PMID: 32033039 DOI: 10.3390/molecules25030655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
230 Singh N, Yadav M, Singh AK, Kumar H, Dwivedi SK, Mishra JS, Gurjar A, Manhas A, Chandra S, Yadav PN, Jagavelu K, Siddiqi MI, Trivedi AK, Chattopadhyay N, Sanyal S. Synthetic FXR agonist GW4064 is a modulator of multiple G protein-coupled receptors. Mol Endocrinol 2014;28:659-73. [PMID: 24597548 DOI: 10.1210/me.2013-1353] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
231 Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009;50:1955-1966. [PMID: 19346330 DOI: 10.1194/jlr.r900010-jlr200] [Cited by in Crossref: 883] [Cited by in F6Publishing: 448] [Article Influence: 67.9] [Reference Citation Analysis]
232 Li T, Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. Adv Pharmacol. 2015;74:263-302. [PMID: 26233910 DOI: 10.1016/bs.apha.2015.04.003] [Cited by in Crossref: 116] [Cited by in F6Publishing: 103] [Article Influence: 16.6] [Reference Citation Analysis]
233 Melvin A, le Roux CW, Docherty NG. The Gut as an Endocrine Organ: Role in the Regulation of Food Intake and Body Weight. Curr Atheroscler Rep 2016;18:49. [PMID: 27324637 DOI: 10.1007/s11883-016-0599-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
234 Biagioli M, Marchianò S, Carino A, Di Giorgio C, Santucci L, Distrutti E, Fiorucci S. Bile Acids Activated Receptors in Inflammatory Bowel Disease. Cells 2021;10:1281. [PMID: 34064187 DOI: 10.3390/cells10061281] [Reference Citation Analysis]
235 Guo C, Chen WD, Wang YD. TGR5, Not Only a Metabolic Regulator. Front Physiol 2016;7:646. [PMID: 28082913 DOI: 10.3389/fphys.2016.00646] [Cited by in F6Publishing: 64] [Reference Citation Analysis]
236 Chong Nguyen C, Duboc D, Rainteau D, Sokol H, Humbert L, Seksik P, Bellino A, Abdoul H, Bouazza N, Treluyer JM, Saadi M, Wahbi K, Soliman H, Coffin B, Bado A, Le Gall M, Varenne O, Duboc H. Circulating bile acids concentration is predictive of coronary artery disease in human. Sci Rep 2021;11:22661. [PMID: 34811445 DOI: 10.1038/s41598-021-02144-y] [Reference Citation Analysis]
237 Zhou H, Zhou SY, Gillilland M 3rd, Li JY, Lee A, Gao J, Zhang G, Xu X, Owyang C. Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by high-fat feeding. JCI Insight 2020;5:138881. [PMID: 33055426 DOI: 10.1172/jci.insight.138881] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
238 Jin LH, Fang ZP, Fan MJ, Huang WD. Bile-ology: from bench to bedside. J Zhejiang Univ Sci B 2019;20:414-27. [PMID: 31090267 DOI: 10.1631/jzus.B1900158] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
239 Harach T, Pols TW, Nomura M, Maida A, Watanabe M, Auwerx J, Schoonjans K. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep. 2012;2:430. [PMID: 22666533 DOI: 10.1038/srep00430] [Cited by in Crossref: 110] [Cited by in F6Publishing: 108] [Article Influence: 11.0] [Reference Citation Analysis]
240 Murakami M, Une N, Nishizawa M, Suzuki S, Ito H, Horiuchi T. Incretin secretion stimulated by ursodeoxycholic acid in healthy subjects. Springerplus. 2013;2:20. [PMID: 23450079 DOI: 10.1186/2193-1801-2-20] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
241 Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap--bile acids in metabolic control. Nat Rev Endocrinol. 2014;10:488-498. [PMID: 24821328 DOI: 10.1038/nrendo.2014.60] [Cited by in Crossref: 251] [Cited by in F6Publishing: 240] [Article Influence: 31.4] [Reference Citation Analysis]
242 Zhang J, Gao LZ, Chen YJ, Zhu PP, Yin SS, Su MM, Ni Y, Miao J, Wu WL, Chen H, Brouwer KLR, Liu CX, Xu L, Jia W, Lan K. Continuum of Host-Gut Microbial Co-metabolism: Host CYP3A4/3A7 are Responsible for Tertiary Oxidations of Deoxycholate Species. Drug Metab Dispos 2019;47:283-94. [PMID: 30606729 DOI: 10.1124/dmd.118.085670] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
243 Ferrell JM, Chiang JYL. Understanding Bile Acid Signaling in Diabetes: From Pathophysiology to Therapeutic Targets. Diabetes Metab J 2019;43:257-72. [PMID: 31210034 DOI: 10.4093/dmj.2019.0043] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 14.5] [Reference Citation Analysis]
244 Chen X, Lou G, Meng Z, Huang W. TGR5: a novel target for weight maintenance and glucose metabolism. Exp Diabetes Res 2011;2011:853501. [PMID: 21754919 DOI: 10.1155/2011/853501] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 5.0] [Reference Citation Analysis]
245 Taoka H, Yokoyama Y, Morimoto K, Kitamura N, Tanigaki T, Takashina Y, Tsubota K, Watanabe M. Role of bile acids in the regulation of the metabolic pathways. World J Diabetes 2016; 7(13): 260-270 [PMID: 27433295 DOI: 10.4239/wjd.v7.i13.260] [Cited by in CrossRef: 38] [Cited by in F6Publishing: 33] [Article Influence: 6.3] [Reference Citation Analysis]
246 Finamore C, Festa C, Renga B, Sepe V, Carino A, Masullo D, Biagioli M, Marchianò S, Capolupo A, Monti MC, Fiorucci S, Zampella A. Navigation in bile acid chemical space: discovery of novel FXR and GPBAR1 ligands. Sci Rep 2016;6:29320. [PMID: 27381677 DOI: 10.1038/srep29320] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
247 Yeh CY, Chung-Davidson YW, Wang H, Li K, Li W. Intestinal synthesis and secretion of bile salts as an adaptation to developmental biliary atresia in the sea lamprey. Proc Natl Acad Sci U S A 2012;109:11419-24. [PMID: 22733776 DOI: 10.1073/pnas.1203008109] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
248 Garruti G, Wang DQ, Di Ciaula A, Portincasa P. Cholecystectomy: a way forward and back to metabolic syndrome? Lab Invest 2018;98:4-6. [PMID: 29297503 DOI: 10.1038/labinvest.2017.129] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
249 Ðanić M, Stanimirov B, Pavlović N, Goločorbin-Kon S, Al-Salami H, Stankov K, Mikov M. Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Front Pharmacol 2018;9:1382. [PMID: 30559664 DOI: 10.3389/fphar.2018.01382] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 8.8] [Reference Citation Analysis]
250 Wang W, Cheng Z, Wang Y, Dai Y, Zhang X, Hu S. Role of Bile Acids in Bariatric Surgery. Front Physiol 2019;10:374. [PMID: 31001146 DOI: 10.3389/fphys.2019.00374] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
251 Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013;14:676-684. [PMID: 23778795 DOI: 10.1038/ni.2640] [Cited by in Crossref: 500] [Cited by in F6Publishing: 450] [Article Influence: 55.6] [Reference Citation Analysis]
252 Trammell SAJ, Svenningsen JS, Holst JJ, Gillum MP, Kuhre RE. Hepatic Bile Acid Reuptake in the Rat Depends on Bile Acid Conjugation but Not on Agonistic Properties towards FXR and TGR5. Molecules 2020;25:E2371. [PMID: 32443832 DOI: 10.3390/molecules25102371] [Reference Citation Analysis]
253 Wu X, Li JY, Lee A, Lu YX, Zhou SY, Owyang C. Satiety induced by bile acids is mediated via vagal afferent pathways. JCI Insight 2020;5:132400. [PMID: 32699194 DOI: 10.1172/jci.insight.132400] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
254 Grant SM, DeMorrow S. Bile Acid Signaling in Neurodegenerative and Neurological Disorders. Int J Mol Sci 2020;21:E5982. [PMID: 32825239 DOI: 10.3390/ijms21175982] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
255 Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019;10:21-56. [PMID: 31853951 DOI: 10.1002/cphy.c190007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
256 Rizzolo D, Kong B, Taylor RE, Brinker A, Goedken M, Buckley B, Guo GL. Bile acid homeostasis in female mice deficient in Cyp7a1 and Cyp27a1. Acta Pharmaceutica Sinica B 2021;11:3847-56. [DOI: 10.1016/j.apsb.2021.05.023] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
257 Lo SH, Cheng KC, Li YX, Chang CH, Cheng JT, Lee KS. Development of betulinic acid as an agonist of TGR5 receptor using a new in vitro assay. Drug Des Devel Ther 2016;10:2669-76. [PMID: 27578964 DOI: 10.2147/DDDT.S113197] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
258 Wang XX, Jiang T, Shen Y, Caldas Y, Miyazaki-Anzai S, Santamaria H, Urbanek C, Solis N, Scherzer P, Lewis L, Gonzalez FJ, Adorini L, Pruzanski M, Kopp JB, Verlander JW, Levi M. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 2010;59:2916-27. [PMID: 20699418 DOI: 10.2337/db10-0019] [Cited by in Crossref: 99] [Cited by in F6Publishing: 100] [Article Influence: 8.3] [Reference Citation Analysis]
259 Arlia-Ciommo A, Piano A, Svistkova V, Mohtashami S, Titorenko VI. Mechanisms underlying the anti-aging and anti-tumor effects of lithocholic bile acid. Int J Mol Sci. 2014;15:16522-16543. [PMID: 25238416 DOI: 10.3390/ijms150916522] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
260 Sun R, Xu C, Feng B, Gao X, Liu Z. Critical roles of bile acids in regulating intestinal mucosal immune responses. Therap Adv Gastroenterol 2021;14:17562848211018098. [PMID: 34104213 DOI: 10.1177/17562848211018098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
261 Kiriyama Y, Nochi H. The Biosynthesis, Signaling, and Neurological Functions of Bile Acids. Biomolecules 2019;9:E232. [PMID: 31208099 DOI: 10.3390/biom9060232] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 12.7] [Reference Citation Analysis]
262 Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 2014;55:1553-95. [PMID: 24838141 DOI: 10.1194/jlr.R049437] [Cited by in Crossref: 163] [Cited by in F6Publishing: 78] [Article Influence: 20.4] [Reference Citation Analysis]
263 Portincasa P, Di Ciaula A, Garruti G, Vacca M, De Angelis M, Wang DQ. Bile Acids and GPBAR-1: Dynamic Interaction Involving Genes, Environment and Gut Microbiome. Nutrients 2020;12:E3709. [PMID: 33266235 DOI: 10.3390/nu12123709] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
264 Shi Y, Su W, Zhang L, Shi C, Zhou J, Wang P, Wang H, Shi X, Wei S, Wang Q, Auwerx J, Schoonjans K, Yu Y, Pan R, Zhou H, Lu L. TGR5 Regulates Macrophage Inflammation in Nonalcoholic Steatohepatitis by Modulating NLRP3 Inflammasome Activation. Front Immunol 2020;11:609060. [PMID: 33692776 DOI: 10.3389/fimmu.2020.609060] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
265 Svensson PA, Olsson M, Andersson-Assarsson JC, Taube M, Pereira MJ, Froguel P, Jacobson P. The TGR5 gene is expressed in human subcutaneous adipose tissue and is associated with obesity, weight loss and resting metabolic rate. Biochem Biophys Res Commun 2013;433:563-6. [PMID: 23523790 DOI: 10.1016/j.bbrc.2013.03.031] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
266 Ding L, Yang Q, Zhang E, Wang Y, Sun S, Yang Y, Tian T, Ju Z, Jiang L, Wang X, Wang Z, Huang W, Yang L. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice. Acta Pharm Sin B 2021;11:1541-54. [PMID: 34221867 DOI: 10.1016/j.apsb.2021.03.038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
267 Zhang Y. Farnesoid X receptor-Acting through bile acids to treat metabolic disorders. Drugs Future 2010;35:635-42. [PMID: 24465082 DOI: 10.1358/dof.2010.035.08.1520865] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
268 Orozco-Aguilar J, Simon F, Cabello-Verrugio C. Redox-Dependent Effects in the Physiopathological Role of Bile Acids. Oxid Med Cell Longev 2021;2021:4847941. [PMID: 34527174 DOI: 10.1155/2021/4847941] [Reference Citation Analysis]
269 Wang ZK, Xiao JG, Huang XF, Gong YC, Li W. Effect of biliary drainage on inducible nitric oxide synthase, CD14 and TGR5 expression in obstructive jaundice rats. World J Gastroenterol 2013; 19(15): 2319-2330 [PMID: 23613625 DOI: 10.3748/wjg.v19.i15.2319] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
270 Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat Rev Endocrinol. 2019;15:701-712. [PMID: 31616073 DOI: 10.1038/s41574-019-0266-7] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 20.0] [Reference Citation Analysis]
271 Flynn CR, Albaugh VL, Abumrad NN. Metabolic Effects of Bile Acids: Potential Role in Bariatric Surgery. Cell Mol Gastroenterol Hepatol 2019;8:235-46. [PMID: 31075353 DOI: 10.1016/j.jcmgh.2019.04.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
272 Baghdasaryan A, Chiba P, Trauner M. Clinical application of transcriptional activators of bile salt transporters. Mol Aspects Med. 2014;37:57-76. [PMID: 24333169 DOI: 10.1016/j.mam.2013.12.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
273 Sojitra C, Dholakia C, Sudhakar P, Singh KK, Agarwal S. Identification of degradation impurity of TGR5 receptor agonist-ZY12201 by LC-MS technique during force degradation study. SN Appl Sci 2021;3:660. [PMID: 34056545 DOI: 10.1007/s42452-021-04660-y] [Reference Citation Analysis]
274 Massey W, Brown JM. The Gut Microbial Endocrine Organ in Type 2 Diabetes. Endocrinology 2021;162:bqaa235. [PMID: 33373432 DOI: 10.1210/endocr/bqaa235] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
275 Bukiya AN, Vaithianathan T, Toro L, Dopico AM. The second transmembrane domain of the large conductance, voltage- and calcium-gated potassium channel beta(1) subunit is a lithocholate sensor. FEBS Lett 2008;582:673-8. [PMID: 18242174 DOI: 10.1016/j.febslet.2008.01.036] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 2.5] [Reference Citation Analysis]
276 Miyazaki-Anzai S, Masuda M, Levi M, Keenan AL, Miyazaki M. Dual activation of the bile acid nuclear receptor FXR and G-protein-coupled receptor TGR5 protects mice against atherosclerosis. PLoS One. 2014;9:e108270. [PMID: 25237811 DOI: 10.1371/journal.pone.0108270] [Cited by in Crossref: 63] [Cited by in F6Publishing: 61] [Article Influence: 7.9] [Reference Citation Analysis]
277 Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol. 2018;6:133-148. [PMID: 30023410 DOI: 10.1016/j.jcmgh.2018.04.003] [Cited by in Crossref: 283] [Cited by in F6Publishing: 253] [Article Influence: 70.8] [Reference Citation Analysis]
278 Xiong Q, Huang H, Wang N, Chen R, Chen N, Han H, Wang Q, Siwko S, Liu M, Qian M, Du B. Metabolite-Sensing G Protein Coupled Receptor TGR5 Protects Host From Viral Infection Through Amplifying Type I Interferon Responses. Front Immunol 2018;9:2289. [PMID: 30333836 DOI: 10.3389/fimmu.2018.02289] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
279 Chiang JYL, Ferrell JM. Bile Acids as Metabolic Regulators and Nutrient Sensors. Annu Rev Nutr 2019;39:175-200. [PMID: 31018107 DOI: 10.1146/annurev-nutr-082018-124344] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 17.3] [Reference Citation Analysis]
280 Agarwal S, Patil A, Aware U, Deshmukh P, Darji B, Sasane S, Sairam KV, Priyadarsiny P, Giri P, Patel H, Giri S, Jain M, Desai RC. Discovery of a Potent and Orally Efficacious TGR5 Receptor Agonist. ACS Med Chem Lett 2016;7:51-5. [PMID: 26819665 DOI: 10.1021/acsmedchemlett.5b00323] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
281 Bukiya AN, Patil SA, Li W, Miller DD, Dopico AM. Calcium- and voltage-gated potassium (BK) channel activators in the 5β-cholanic acid-3α-ol analogue series with modifications in the lateral chain. ChemMedChem 2012;7:1784-92. [PMID: 22945504 DOI: 10.1002/cmdc.201200290] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
282 Cipriani S, Mencarelli A, Bruno A, Renga B, Distrutti E, Santucci L, Baldelli F, Fiorucci S. Activation of the bile acid receptor GPBAR1 protects against gastrointestinal injury caused by non-steroidal anti-inflammatory drugs and aspirin in mice. Br J Pharmacol 2013;168:225-37. [PMID: 22881598 DOI: 10.1111/j.1476-5381.2012.02128.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
283 Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15:111-128. [PMID: 29018272 DOI: 10.1038/nrgastro.2017.119] [Cited by in Crossref: 339] [Cited by in F6Publishing: 324] [Article Influence: 67.8] [Reference Citation Analysis]
284 Suga T, Yamaguchi H, Sato T, Maekawa M, Goto J, Mano N. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. PLoS One 2017;12:e0169719. [PMID: 28060902 DOI: 10.1371/journal.pone.0169719] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 8.4] [Reference Citation Analysis]
285 Im DS. Intercellular Lipid Mediators and GPCR Drug Discovery. Biomol Ther (Seoul) 2013;21:411-22. [PMID: 24404331 DOI: 10.4062/biomolther.2013.080] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
286 Cai JS, Chen JH. The mechanism of enterohepatic circulation in the formation of gallstone disease. J Membr Biol 2014;247:1067-82. [PMID: 25107305 DOI: 10.1007/s00232-014-9715-3] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
287 Mutlu AS, Duffy J, Wang MC. Lipid metabolism and lipid signals in aging and longevity. Dev Cell 2021;56:1394-407. [PMID: 33891896 DOI: 10.1016/j.devcel.2021.03.034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
288 Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System. Front Neurosci. 2017;11:617. [PMID: 29163019 DOI: 10.3389/fnins.2017.00617] [Cited by in Crossref: 83] [Cited by in F6Publishing: 73] [Article Influence: 16.6] [Reference Citation Analysis]
289 Ahlin S, Cefalo C, Bondia-Pons I, Capristo E, Marini L, Gastaldelli A, Mingrone G, Nolan JJ. Bile acid changes after metabolic surgery are linked to improvement in insulin sensitivity. Br J Surg 2019;106:1178-86. [PMID: 31216062 DOI: 10.1002/bjs.11208] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
290 Somm E, Henry H, Bruce SJ, Aeby S, Rosikiewicz M, Sykiotis GP, Asrih M, Jornayvaz FR, Denechaud PD, Albrecht U, Mohammadi M, Dwyer A, Acierno JS Jr, Schoonjans K, Fajas L, Greub G, Pitteloud N. β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCI Insight 2017;2:91809. [PMID: 28422755 DOI: 10.1172/jci.insight.91809] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
291 Rajagopal S, Kumar DP, Mahavadi S, Bhattacharya S, Zhou R, Corvera CU, Bunnett NW, Grider JR, Murthy KS. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway. Am J Physiol Gastrointest Liver Physiol 2013;304:G527-35. [PMID: 23275618 DOI: 10.1152/ajpgi.00388.2012] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 4.5] [Reference Citation Analysis]
292 Jadhav K, Xu Y, Li Y, Xu J, Zhu Y, Adorini L, Lee YK, Kasumov T, Yin L, Zhang Y. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol Metab. 2018;9:131-140. [PMID: 29361497 DOI: 10.1016/j.molmet.2018.01.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 10.3] [Reference Citation Analysis]
293 Thibaut MM, Gillard J, Dolly A, Roumain M, Leclercq IA, Delzenne NM, Muccioli GG, Bindels LB. Bile Acid Dysregulation Is Intrinsically Related to Cachexia in Tumor-Bearing Mice. Cancers (Basel) 2021;13:6389. [PMID: 34945009 DOI: 10.3390/cancers13246389] [Reference Citation Analysis]
294 Mells JE, Anania FA. The role of gastrointestinal hormones in hepatic lipid metabolism. Semin Liver Dis. 2013;33:343-357. [PMID: 24222092 DOI: 10.1055/s-0033-1358527] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 4.8] [Reference Citation Analysis]
295 Han S, Li T, Ellis E, Strom S, Chiang JY. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. Mol Endocrinol. 2010;24:1151-1164. [PMID: 20371703 DOI: 10.1210/me.2009-0482] [Cited by in Crossref: 87] [Cited by in F6Publishing: 88] [Article Influence: 7.3] [Reference Citation Analysis]
296 Marchianò S, Biagioli M, Roselli R, Zampella A, Di Giorgio C, Bordoni M, Bellini R, Morretta E, Monti MC, Distrutti E, Fiorucci S. Atorvastatin protects against liver and vascular damage in a model of diet induced steatohepatitis by resetting FXR and GPBAR1 signaling. FASEB J 2022;36:e22060. [PMID: 34862975 DOI: 10.1096/fj.202101397R] [Reference Citation Analysis]
297 Xue R, Su L, Lai S, Wang Y, Zhao D, Fan J, Chen W, Hylemon PB, Zhou H. Bile Acid Receptors and the Gut-Liver Axis in Nonalcoholic Fatty Liver Disease. Cells 2021;10:2806. [PMID: 34831031 DOI: 10.3390/cells10112806] [Reference Citation Analysis]
298 Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021;10:3347. [PMID: 34943862 DOI: 10.3390/cells10123347] [Reference Citation Analysis]
299 Zarrinpar A, Loomba R. Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012;36:909-921. [PMID: 23057494 DOI: 10.1111/apt.12084] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 6.7] [Reference Citation Analysis]