BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mnatsakanyan N, Jonas EA. ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration. J Mol Cell Cardiol 2020;144:109-18. [PMID: 32461058 DOI: 10.1016/j.yjmcc.2020.05.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Park H, Crowe-white KM, Ciesla L, Scott M, Bannerman S, Davis AU, Adhikari B, Burnett G, Broman K, Ferdous KA, Lackey KH, Licznerski P, Jonas EA. Alpha-Tocotrienol Enhances Arborization of Primary Hippocampal Neurons via Upregulation of Bcl-xL. Nutrition Research 2022. [DOI: 10.1016/j.nutres.2022.02.007] [Reference Citation Analysis]
2 Algieri C, Bernardini C, Oppedisano F, La Mantia D, Trombetti F, Palma E, Forni M, Mollace V, Romeo G, Nesci S. Mitochondria Bioenergetic Functions and Cell Metabolism Are Modulated by the Bergamot Polyphenolic Fraction. Cells 2022;11:1401. [DOI: 10.3390/cells11091401] [Reference Citation Analysis]
3 Mironova GD, Pavlov EV. Mitochondrial Cyclosporine A-Independent Palmitate/Ca2+-Induced Permeability Transition Pore (PA-mPT Pore) and Its Role in Mitochondrial Function and Protection against Calcium Overload and Glutamate Toxicity. Cells 2021;10:125. [PMID: 33440765 DOI: 10.3390/cells10010125] [Reference Citation Analysis]
4 Fiorillo M, Ózsvári B, Sotgia F, Lisanti MP. High ATP Production Fuels Cancer Drug Resistance and Metastasis: Implications for Mitochondrial ATP Depletion Therapy. Front Oncol 2021;11:740720. [PMID: 34722292 DOI: 10.3389/fonc.2021.740720] [Reference Citation Analysis]
5 Licznerski P, Park HA, Rolyan H, Chen R, Mnatsakanyan N, Miranda P, Graham M, Wu J, Cruz-Reyes N, Mehta N, Sohail S, Salcedo J, Song E, Effman C, Effman S, Brandao L, Xu GN, Braker A, Gribkoff VK, Levy RJ, Jonas EA. ATP Synthase c-Subunit Leak Causes Aberrant Cellular Metabolism in Fragile X Syndrome. Cell 2020;182:1170-1185.e9. [PMID: 32795412 DOI: 10.1016/j.cell.2020.07.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
6 Nesci S, Trombetti F, Pagliarani A, Ventrella V, Algieri C, Tioli G, Lenaz G. Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life (Basel) 2021;11:242. [PMID: 33804034 DOI: 10.3390/life11030242] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Wang W, Sheu SS. Unsolved mysteries and controversies of mitochondria in the heart - A virtual special issue in JMCC: Part IV. J Mol Cell Cardiol 2021;151:72-3. [PMID: 33221273 DOI: 10.1016/j.yjmcc.2020.11.006] [Reference Citation Analysis]
8 Park HA, Hayden MM, Bannerman S, Jansen J, Crowe-White KM. Anti-Apoptotic Effects of Carotenoids in Neurodegeneration. Molecules 2020;25:E3453. [PMID: 32751250 DOI: 10.3390/molecules25153453] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
9 Algieri C, Trombetti F, Pagliarani A, Ventrella V, Nesci S. The mitochondrial F1FO-ATPase exploits the dithiol redox state to modulate the permeability transition pore. Arch Biochem Biophys 2021;712:109027. [PMID: 34520732 DOI: 10.1016/j.abb.2021.109027] [Reference Citation Analysis]
10 Jansen J, Scott M, Amjad E, Stumpf A, Lackey KH, Caldwell KA, Park HA. Bcl-xL Is Required by Primary Hippocampal Neurons during Development to Support Local Energy Metabolism at Neurites. Biology (Basel) 2021;10:772. [PMID: 34440004 DOI: 10.3390/biology10080772] [Reference Citation Analysis]
11 Garone C, Pietra A, Nesci S. From the Structural and (Dys)Function of ATP Synthase to Deficiency in Age-Related Diseases. Life 2022;12:401. [DOI: 10.3390/life12030401] [Reference Citation Analysis]
12 Neginskaya MA, Pavlov EV, Sheu SS. Electrophysiological properties of the mitochondrial permeability transition pores: Channel diversity and disease implication. Biochim Biophys Acta Bioenerg 2021;1862:148357. [PMID: 33359307 DOI: 10.1016/j.bbabio.2020.148357] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
13 Garab G, Yaguzhinsky LS, Dlouhý O, Nesterov SV, Špunda V, Gasanoff ES. Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Progress in Lipid Research 2022;86:101163. [DOI: 10.1016/j.plipres.2022.101163] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Mollinedo F, Gajate C. Mitochondrial Targeting Involving Cholesterol-Rich Lipid Rafts in the Mechanism of Action of the Antitumor Ether Lipid and Alkylphospholipid Analog Edelfosine. Pharmaceutics 2021;13:763. [PMID: 34065546 DOI: 10.3390/pharmaceutics13050763] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Angeli S, Foulger A, Chamoli M, Peiris TH, Gerencser A, Shahmirzadi AA, Andersen J, Lithgow G. The mitochondrial permeability transition pore activates the mitochondrial unfolded protein response and promotes aging. Elife 2021;10:e63453. [PMID: 34467850 DOI: 10.7554/eLife.63453] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Boyman L, Greiser M, Lederer WJ. Calcium influx through the mitochondrial calcium uniporter holocomplex, MCUcx. J Mol Cell Cardiol 2021;151:145-54. [PMID: 33147447 DOI: 10.1016/j.yjmcc.2020.10.015] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Nath S. A Novel Conceptual Model for the Dual Role of FOF1-ATP Synthase in Cell Life and Cell Death. Biomol Concepts 2020;11:143-52. [PMID: 32827389 DOI: 10.1515/bmc-2020-0014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
18 Nesci S. What happens when the mitochondrial H+-translocating F1FO-ATP(hydrol)ase becomes a molecular target of calcium? The pore opens. Biochimie 2022. [DOI: 10.1016/j.biochi.2022.03.012] [Reference Citation Analysis]
19 Umbrasas D, Arandarcikaite O, Grigaleviciute R, Stakauskas R, Borutaite V. Neuroprotective Effect of a Novel ATP-Synthase Inhibitor Bedaquiline in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2021;22:9717. [PMID: 34575875 DOI: 10.3390/ijms22189717] [Reference Citation Analysis]
20 Nesci S, Pagliarani A. Ca2+ as cofactor of the mitochondrial H+ -translocating F1 FO -ATP(hydrol)ase. Proteins 2021;89:477-82. [PMID: 33378096 DOI: 10.1002/prot.26040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Federico M, De la Fuente S, Palomeque J, Sheu SS. The role of mitochondria in metabolic disease: a special emphasis on heart dysfunction. J Physiol 2021;599:3477-93. [PMID: 33932959 DOI: 10.1113/JP279376] [Reference Citation Analysis]
22 Nesci S, Pagliarani A. Incoming news on the F-type ATPase structure and functions in mammalian mitochondria. BBA Advances 2021;1:100001. [DOI: 10.1016/j.bbadva.2020.100001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
23 Yang Y, Wang W, Tian Y, Shi J. Sirtuin 3 and mitochondrial permeability transition pore (mPTP): a systematic review. Mitochondrion 2022:S1567-7249(22)00024-1. [PMID: 35346868 DOI: 10.1016/j.mito.2022.03.004] [Reference Citation Analysis]
24 Amodeo GF, Pavlov EV. Amyloid β, α-synuclein and the c subunit of the ATP synthase: Can these peptides reveal an amyloidogenic pathway of the permeability transition pore? Biochim Biophys Acta Biomembr 2021;1863:183531. [PMID: 33309700 DOI: 10.1016/j.bbamem.2020.183531] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
25 Algieri C, Trombetti F, Pagliarani A, Fabbri M, Nesci S. The inhibition of gadolinium ion (Gd3+) on the mitochondrial F1FO-ATPase is linked to the modulation of the mitochondrial permeability transition pore. Int J Biol Macromol 2021;184:250-8. [PMID: 34126146 DOI: 10.1016/j.ijbiomac.2021.06.065] [Reference Citation Analysis]
26 Domínguez-Zorita S, Romero-Carramiñana I, Cuezva JM, Esparza-Moltó PB. The ATPase Inhibitory Factor 1 is a Tissue-Specific Physiological Regulator of the Structure and Function of Mitochondrial ATP Synthase: A Closer Look Into Neuronal Function. Front Physiol 2022;13:868820. [PMID: 35620611 DOI: 10.3389/fphys.2022.868820] [Reference Citation Analysis]
27 Nesci S, Rubattu S. The ATP synthase glycine zipper of the c subunits: From the structural to the functional role in mitochondrial biology of cardiovascular diseases. Biochim Biophys Acta Mol Cell Res 2021;1868:119075. [PMID: 34111435 DOI: 10.1016/j.bbamcr.2021.119075] [Reference Citation Analysis]
28 Park H, Stumpf A, Broman K, Jansen J, Dunn T, Scott M, Crowe-white KM. Role of lycopene in mitochondrial protection during differential levels of oxidative stress in primary cortical neurons. Brain Disorders 2021;3:100016. [DOI: 10.1016/j.dscb.2021.100016] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]