BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li S, Chang L, Zhang J. Advancing organelle genome transformation and editing for crop improvement. Plant Commun 2021;2:100141. [PMID: 33898977 DOI: 10.1016/j.xplc.2021.100141] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Senthilkumar S, Sarath P, Dev SA, Ghosh Dasgupta M. Chloroplast genome assembly and phylogenetic analysis of Pterocarpus dalbergioides Roxb., an endemic timber species. Tree Genetics & Genomes 2022;18:43. [DOI: 10.1007/s11295-022-01574-7] [Reference Citation Analysis]
2 Yang Y, Hassan SH, Awasthi MK, Gajendran B, Sharma M, Ji M, Salama E. The recent progress on the bioactive compounds from algal biomass for human health applications. Food Bioscience 2022. [DOI: 10.1016/j.fbio.2022.102267] [Reference Citation Analysis]
3 Mmbando GS. Recent Advances in Antibiotic-Free Markers; Novel Technologies to Enhance Safe Human Food Production in the World. Mol Biotechnol 2022. [DOI: 10.1007/s12033-022-00609-7] [Reference Citation Analysis]
4 da Fonseca-Pereira P, Siqueira JA, Monteiro-Batista RC, Vaz MGMV, Nunes-Nesi A, Araújo WL. Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022;359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Reference Citation Analysis]
5 Maliga P. Engineering the plastid and mitochondrial genomes of flowering plants. Nat Plants 2022. [PMID: 36038655 DOI: 10.1038/s41477-022-01227-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Son S, Park SR. Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants. Front Plant Sci 2022;13:902413. [PMID: 35677236 DOI: 10.3389/fpls.2022.902413] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 LaManna LM, Parulekar MS, Maliga P. Multiple sgRNAs for one-step inactivation of the duplicated acetyl-coenzyme A carboxylase 2 (ACC2) genes in Brassica napus. Plant Physiol 2022;189:178-87. [PMID: 35188200 DOI: 10.1093/plphys/kiac069] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Yang J, Yang X, Su T, Hu Z, Zhang M. The Development of Mitochondrial Gene Editing Tools and Their Possible Roles in Crop Improvement for Future Agriculture. Advanced Genetics 2022;3:2100019. [DOI: 10.1002/ggn2.202100019] [Reference Citation Analysis]
9 Liu H, Timko MP. Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. IJMS 2022;23:1326. [DOI: 10.3390/ijms23031326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sarala K, Nanda C, Baghyalakshmi K, Darvishzadeh R, Prabhakara Rao K, Sreedhar U, Gangadhara K. Designing Tobacco Genomes for Resistance to Biotic Stresses. Genomic Designing for Biotic Stress Resistant Technical Crops 2022. [DOI: 10.1007/978-3-031-09293-0_10] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Sarala K, Rao KP, Nanda C, Baghyalakshmi K, Darvishzadeh R, Gangadhara K, Rajappa JJ. Abiotic Stress Resistance in Tobacco: Advances and Strategies. Genomic Designing for Abiotic Stress Resistant Technical Crops 2022. [DOI: 10.1007/978-3-031-05706-9_10] [Reference Citation Analysis]
12 Wang W, Gao L, Cui X. A New Year's spotlight on two years of publication. Plant Communications 2022;3:100274. [DOI: 10.1016/j.xplc.2021.100274] [Reference Citation Analysis]
13 Singh SK, Pradhan S, Krishna H, Alizadeh M, Kumar C, Singh NV, Jadhav AK, Ramajayam D, Dev R, Singh R. Development of Abiotic Stress Resistant Grapevine Varieties. Genomic Designing for Abiotic Stress Resistant Fruit Crops 2022. [DOI: 10.1007/978-3-031-09875-8_4] [Reference Citation Analysis]
14 Abdallah NA, Hamwieh A, Radwan K, Fouad N, Prakash C. Genome editing techniques in plants: a comprehensive review and future prospects toward zero hunger. GM Crops Food 2021;12:601-15. [PMID: 35135438 DOI: 10.1080/21645698.2021.2021724] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ren B, Cao J, He Y, Yang S, Zhang J. Assessment on effects of transplastomic potato plants expressing Colorado potato beetle β-Actin double-stranded RNAs for three non-target pests. Pestic Biochem Physiol 2021;178:104909. [PMID: 34446185 DOI: 10.1016/j.pestbp.2021.104909] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Mahapatra K, Banerjee S, De S, Mitra M, Roy P, Roy S. An Insight Into the Mechanism of Plant Organelle Genome Maintenance and Implications of Organelle Genome in Crop Improvement: An Update. Front Cell Dev Biol 2021;9:671698. [PMID: 34447743 DOI: 10.3389/fcell.2021.671698] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Li G, Zhang L, Xue P. Codon usage pattern and genetic diversity in chloroplast genomes of Panicum species. Gene 2021;802:145866. [PMID: 34352297 DOI: 10.1016/j.gene.2021.145866] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Senthilkumar S, Ulaganathan K, Ghosh Dasgupta M. Reference-based assembly of chloroplast genome from leaf transcriptome data of Pterocarpus santalinus. 3 Biotech 2021;11:393. [PMID: 34458062 DOI: 10.1007/s13205-021-02943-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Lee H, Hong C, Hwang J, Seo PJ. Go green with plant organelle genome editing. Mol Plant 2021:S1674-2052(21)00278-1. [PMID: 34284170 DOI: 10.1016/j.molp.2021.07.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]