BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Masoud R, Reyes-Castellanos G, Lac S, Garcia J, Dou S, Shintu L, Abdel Hadi N, Gicquel T, El Kaoutari A, Diémé B, Tranchida F, Cormareche L, Borge L, Gayet O, Pasquier E, Dusetti N, Iovanna J, Carrier A. Targeting Mitochondrial Complex I Overcomes Chemoresistance in High OXPHOS Pancreatic Cancer. Cell Rep Med 2020;1:100143. [PMID: 33294863 DOI: 10.1016/j.xcrm.2020.100143] [Cited by in Crossref: 14] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Chen G, Wu K, Li H, Xia D, He T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front Oncol 2022;12:961637. [DOI: 10.3389/fonc.2022.961637] [Reference Citation Analysis]
2 Tang Y, Liu G, Jia Y, Sun T. SRGAP2 controls colorectal cancer chemosensitivity via regulation of mitochondrial complex I activity. Hum Cell 2022. [PMID: 36059022 DOI: 10.1007/s13577-022-00781-7] [Reference Citation Analysis]
3 Lee DE, Kang HW, Kim SY, Kim MJ, Jeong JW, Hong WC, Fang S, Kim HS, Lee YS, Kim HJ, Park JS. Ivermectin and gemcitabine combination treatment induces apoptosis of pancreatic cancer cells via mitochondrial dysfunction. Front Pharmacol 2022;13:934746. [DOI: 10.3389/fphar.2022.934746] [Reference Citation Analysis]
4 Fujiwara-Tani R, Sasaki T, Takagi T, Mori S, Kishi S, Nishiguchi Y, Ohmori H, Fujii K, Kuniyasu H. Gemcitabine Resistance in Pancreatic Ductal Carcinoma Cell Lines Stems from Reprogramming of Energy Metabolism. Int J Mol Sci 2022;23:7824. [PMID: 35887170 DOI: 10.3390/ijms23147824] [Reference Citation Analysis]
5 Monberg ME, Geiger H, Lee JJ, Sharma R, Semaan A, Bernard V, Wong J, Wang F, Liang S, Swartzlander DB, Stephens BM, Katz MHG, Chen K, Robine N, Guerrero PA, Maitra A. Occult polyclonality of preclinical pancreatic cancer models drives in vitro evolution. Nat Commun 2022;13:3652. [PMID: 35752636 DOI: 10.1038/s41467-022-31376-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Tidwell TR, Røsland GV, Tronstad KJ, Søreide K, Hagland HR. Metabolic flux analysis of 3D spheroids reveals significant differences in glucose metabolism from matched 2D cultures of colorectal cancer and pancreatic ductal adenocarcinoma cell lines. Cancer Metab 2022;10:9. [PMID: 35578327 DOI: 10.1186/s40170-022-00285-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Torresano L, Santacatterina F, Domínguez-zorita S, Nuevo-tapioles C, Núñez-salgado A, Esparza-moltó PB, González-llorente L, Romero-carramiñana I, Núñez de Arenas C, Sánchez-garrido B, Nájera L, Salas C, Provencio M, Cuezva JM. Analysis of the metabolic proteome of lung adenocarcinomas by reverse-phase protein arrays (RPPA) emphasizes mitochondria as targets for therapy. Oncogenesis 2022;11. [DOI: 10.1038/s41389-022-00400-y] [Reference Citation Analysis]
8 Olelewe C, Kim JH, Ofori S, Mertens RT, Gukathasan S, Awuah SG. Gold(III)-P-chirogenic complex induces mitochondrial dysfunction in triple-negative breast cancer. iScience 2022;25:104340. [DOI: 10.1016/j.isci.2022.104340] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Guo L. Mitochondrial ATP Synthase Inhibitory Factor 1 Interacts with the p53-Cyclophilin D Complex and Promotes Opening of the Permeability Transition Pore. J Biol Chem 2022;:101858. [PMID: 35337801 DOI: 10.1016/j.jbc.2022.101858] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Greene J, Segaran A, Lord S. Targeting OXPHOS and the electronic transport chain in cancer; molecular and therapeutic implications. Semin Cancer Biol 2022:S1044-579X(22)00023-2. [PMID: 35122973 DOI: 10.1016/j.semcancer.2022.02.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Reyes-Castellanos G, Abdel Hadi N, Carrier A. Autophagy Contributes to Metabolic Reprogramming and Therapeutic Resistance in Pancreatic Tumors. Cells 2022;11:426. [PMID: 35159234 DOI: 10.3390/cells11030426] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
12 Kim B, Lee JJ, Shin JS, Suh JW, Jung S, Hwang GS, Lee HY, Lee KJ. Nm23-H1 activator phenylbutenoid dimer exerts cytotoxic effects on metastatic breast cancer cells by inducing mitochondrial dysfunction only under glucose starvation. Sci Rep 2021;11:23549. [PMID: 34876614 DOI: 10.1038/s41598-021-02729-7] [Reference Citation Analysis]
13 Abdel Hadi N, Boet E, Lahalle A, Lauture L, Refeyton A, Reyes-Castellanos G, Caplet N, Carrier A, Le Cam L, Mazure NM, Ricci JE, Rocchi S, Sarry JE, Vasseur S, Vlaski-Lafarge M, Rossignol R, Bost F. Meeting report of the 4th biennial Metabolism and Cancer symposium. FEBS J 2021. [PMID: 34817127 DOI: 10.1111/febs.16295] [Reference Citation Analysis]
14 Vilaplana-Lopera N, Besh M, Moon EJ. Targeting Hypoxia: Revival of Old Remedies. Biomolecules 2021;11:1604. [PMID: 34827602 DOI: 10.3390/biom11111604] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Jain A, Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities. World J Gastroenterol 2021; 27(39): 6527-6550 [PMID: 34754151 DOI: 10.3748/wjg.v27.i39.6527] [Cited by in CrossRef: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
16 Pook H, Pauklin S. Mechanisms of Cancer Cell Death: Therapeutic Implications for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021;13:4834. [PMID: 34638318 DOI: 10.3390/cancers13194834] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
17 Alhourani A, Førde JL, Eichacker LA, Herfindal L, Hagland HR. Improved pH-Responsive Release of Phenformin from Low-Defect Graphene Compared to Graphene Oxide. ACS Omega 2021;6:24619-29. [PMID: 34604644 DOI: 10.1021/acsomega.1c03283] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Moro L. Mitochondrial DNA and MitomiR Variations in Pancreatic Cancer: Potential Diagnostic and Prognostic Biomarkers. Int J Mol Sci 2021;22:9692. [PMID: 34575852 DOI: 10.3390/ijms22189692] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Luna Yolba R, Visentin V, Hervé C, Chiche J, Ricci JE, Méneyrol J, Paillasse MR, Alet N. EVT-701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent anti-tumor activity in models of solid cancers. Pharmacol Res Perspect 2021;9:e00854. [PMID: 34478236 DOI: 10.1002/prp2.854] [Reference Citation Analysis]
20 Dujardin P, Baginska AK, Urban S, Grüner BM. Unraveling Tumor Heterogeneity by Using DNA Barcoding Technologies to Develop Personalized Treatment Strategies in Advanced-Stage PDAC. Cancers (Basel) 2021;13:4187. [PMID: 34439341 DOI: 10.3390/cancers13164187] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Poillet-Perez L, Sarry JE, Joffre C. Autophagy is a major metabolic regulator involved in cancer therapy resistance. Cell Rep 2021;36:109528. [PMID: 34407408 DOI: 10.1016/j.celrep.2021.109528] [Cited by in F6Publishing: 15] [Reference Citation Analysis]
22 Miallot R, Galland F, Millet V, Blay JY, Naquet P. Metabolic landscapes in sarcomas. J Hematol Oncol 2021;14:114. [PMID: 34294128 DOI: 10.1186/s13045-021-01125-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 McCann C, Kerr EM. Metabolic Reprogramming: A Friend or Foe to Cancer Therapy? Cancers (Basel) 2021;13:3351. [PMID: 34283054 DOI: 10.3390/cancers13133351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
24 Beatty GL, Werba G, Lyssiotis CA, Simeone DM. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev 2021;35:940-62. [PMID: 34117095 DOI: 10.1101/gad.348523.121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
25 Wu Y, Zeng H, Yu Q, Huang H, Fervers B, Chen ZS, Lu L. A Circulating Exosome RNA Signature Is a Potential Diagnostic Marker for Pancreatic Cancer, a Systematic Study. Cancers (Basel) 2021;13:2565. [PMID: 34073722 DOI: 10.3390/cancers13112565] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
26 Amrutkar M, Gladhaug IP. Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021;13:601. [PMID: 33546284 DOI: 10.3390/cancers13040601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
27 Abdel Hadi N, Reyes-Castellanos G, Carrier A. Targeting Redox Metabolism in Pancreatic Cancer. Int J Mol Sci 2021;22:1534. [PMID: 33546421 DOI: 10.3390/ijms22041534] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]