BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gramberg T, Hofmann H, Möller P, Lalor PF, Marzi A, Geier M, Krumbiegel M, Winkler T, Kirchhoff F, Adams DH, Becker S, Münch J, Pöhlmann S. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology 2005;340:224-36. [PMID: 16051304 DOI: 10.1016/j.virol.2005.06.026] [Cited by in Crossref: 143] [Cited by in F6Publishing: 141] [Article Influence: 8.9] [Reference Citation Analysis]
Number Citing Articles
1 Schafer A, Xiong R, Cooper L, Nowar R, Lee H, Li Y, Ramirez BE, Peet NP, Caffrey M, Thatcher GRJ, Saphire EO, Cheng H, Rong L. Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry. PLoS Pathog 2021;17:e1009312. [PMID: 33539432 DOI: 10.1371/journal.ppat.1009312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Vigerust DJ, Ulett KB, Boyd KL, Madsen J, Hawgood S, McCullers JA. N-linked glycosylation attenuates H3N2 influenza viruses. J Virol 2007;81:8593-600. [PMID: 17553891 DOI: 10.1128/JVI.00769-07] [Cited by in Crossref: 134] [Cited by in F6Publishing: 87] [Article Influence: 9.6] [Reference Citation Analysis]
3 Rahimi N. C-type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to Pathogen Recognition Receptors. Biology (Basel) 2020;10:1. [PMID: 33375175 DOI: 10.3390/biology10010001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
4 McLay L, Ansari A, Liang Y, Ly H. Targeting virulence mechanisms for the prevention and therapy of arenaviral hemorrhagic fever. Antiviral Res 2013;97:81-92. [PMID: 23261843 DOI: 10.1016/j.antiviral.2012.12.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
5 LeBlanc EV, Kim Y, Capicciotti CJ, Colpitts CC. Hepatitis C Virus Glycan-Dependent Interactions and the Potential for Novel Preventative Strategies. Pathogens 2021;10:685. [PMID: 34205894 DOI: 10.3390/pathogens10060685] [Reference Citation Analysis]
6 Messaoudi I, Basler CF. Immunological features underlying viral hemorrhagic fevers. Curr Opin Immunol 2015;36:38-46. [PMID: 26163194 DOI: 10.1016/j.coi.2015.06.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
7 Mittler E, Kolesnikova L, Hartlieb B, Davey R, Becker S. The cytoplasmic domain of Marburg virus GP modulates early steps of viral infection. J Virol 2011;85:8188-96. [PMID: 21680524 DOI: 10.1128/JVI.00453-11] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
8 Graham RL, Baric RS. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol 2010;84:3134-46. [PMID: 19906932 DOI: 10.1128/JVI.01394-09] [Cited by in Crossref: 369] [Cited by in F6Publishing: 265] [Article Influence: 30.8] [Reference Citation Analysis]
9 Qian Z, Dominguez SR, Holmes KV. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS One 2013;8:e76469. [PMID: 24098509 DOI: 10.1371/journal.pone.0076469] [Cited by in Crossref: 156] [Cited by in F6Publishing: 141] [Article Influence: 19.5] [Reference Citation Analysis]
10 Domínguez-Soto A, Aragoneses-Fenoll L, Gómez-Aguado F, Corcuera MT, Clária J, García-Monzón C, Bustos M, Corbí AL. The pathogen receptor liver and lymph node sinusoidal endotelial cell C-type lectin is expressed in human Kupffer cells and regulated by PU.1. Hepatology. 2009;49:287-296. [PMID: 19111020 DOI: 10.1002/hep. 22678] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Lu Q, Liu J, Zhao S, Gomez Castro MF, Laurent-Rolle M, Dong J, Ran X, Damani-Yokota P, Tang H, Karakousi T, Son J, Kaczmarek ME, Zhang Z, Yeung ST, McCune BT, Chen RE, Tang F, Ren X, Chen X, Hsu JCC, Teplova M, Huang B, Deng H, Long Z, Mudianto T, Jin S, Lin P, Du J, Zang R, Su TT, Herrera A, Zhou M, Yan R, Cui J, Zhu J, Zhou Q, Wang T, Ma J, Koralov SB, Zhang Z, Aifantis I, Segal LN, Diamond MS, Khanna KM, Stapleford KA, Cresswell P, Liu Y, Ding S, Xie Q, Wang J. SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity 2021;54:1304-1319.e9. [PMID: 34048708 DOI: 10.1016/j.immuni.2021.05.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
12 Domínguez-Soto A, Aragoneses-Fenoll L, Gómez-Aguado F, Corcuera MT, Clária J, García-Monzón C, Bustos M, Corbí AL. The pathogen receptor liver and lymph node sinusoidal endotelial cell C-type lectin is expressed in human Kupffer cells and regulated by PU.1. Hepatology 2009;49:287-96. [PMID: 19111020 DOI: 10.1002/hep.22678] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.5] [Reference Citation Analysis]
13 Vilella F, Wang W, Moreno I, Roson B, Quake SR, Simon C. Single-cell RNA Sequencing of SARS-CoV-2 Cell Entry Factors in the Preconceptional Human Endometrium. Hum Reprod 2021:deab183. [PMID: 34329437 DOI: 10.1093/humrep/deab183] [Reference Citation Analysis]
14 Schandock F, Riber CF, Röcker A, Müller JA, Harms M, Gajda P, Zuwala K, Andersen AHF, Løvschall KB, Tolstrup M, Kreppel F, Münch J, Zelikin AN. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses. Adv Healthc Mater 2017;6. [PMID: 28945945 DOI: 10.1002/adhm.201700748] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
15 Simmons G, Rennekamp AJ, Bates P. Proteolysis of SARS-associated coronavirus spike glycoprotein. Adv Exp Med Biol 2006;581:235-40. [PMID: 17037535 DOI: 10.1007/978-0-387-33012-9_39] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
16 Kuroda M, Fujikura D, Nanbo A, Marzi A, Noyori O, Kajihara M, Maruyama J, Matsuno K, Miyamoto H, Yoshida R, Feldmann H, Takada A. Interaction between TIM-1 and NPC1 Is Important for Cellular Entry of Ebola Virus. J Virol 2015;89:6481-93. [PMID: 25855742 DOI: 10.1128/JVI.03156-14] [Cited by in Crossref: 53] [Cited by in F6Publishing: 25] [Article Influence: 8.8] [Reference Citation Analysis]
17 Fenouillet E, Barbouche R, Jones IM. Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus. Antioxid Redox Signal 2007;9:1009-34. [PMID: 17567241 DOI: 10.1089/ars.2007.1639] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 4.6] [Reference Citation Analysis]
18 Perez-Zsolt D, Martinez-Picado J, Izquierdo-Useros N. When Dendritic Cells Go Viral: The Role of Siglec-1 in Host Defense and Dissemination of Enveloped Viruses. Viruses 2019;12:E8. [PMID: 31861617 DOI: 10.3390/v12010008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
19 Martinez O, Leung LW, Basler CF. The role of antigen-presenting cells in filoviral hemorrhagic fever: gaps in current knowledge. Antiviral Res 2012;93:416-28. [PMID: 22333482 DOI: 10.1016/j.antiviral.2012.01.011] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
20 Foster AJ, Bird JH, Timmer MSM, Stocker BL. The Ligands of C-Type Lectins. In: Yamasaki S, editor. C-Type Lectin Receptors in Immunity. Tokyo: Springer Japan; 2016. pp. 191-215. [DOI: 10.1007/978-4-431-56015-9_13] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
21 Echeverria B, Serna S, Achilli S, Vivès C, Pham J, Thépaut M, Hokke CH, Fieschi F, Reichardt NC. Chemoenzymatic Synthesis of N-glycan Positional Isomers and Evidence for Branch Selective Binding by Monoclonal Antibodies and Human C-type Lectin Receptors. ACS Chem Biol 2018;13:2269-79. [PMID: 29894153 DOI: 10.1021/acschembio.8b00431] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 8.7] [Reference Citation Analysis]
22 Powlesland AS, Fisch T, Taylor ME, Smith DF, Tissot B, Dell A, Pöhlmann S, Drickamer K. A novel mechanism for LSECtin binding to Ebola virus surface glycoprotein through truncated glycans. J Biol Chem 2008;283:593-602. [PMID: 17984090 DOI: 10.1074/jbc.M706292200] [Cited by in Crossref: 77] [Cited by in F6Publishing: 50] [Article Influence: 5.5] [Reference Citation Analysis]
23 Shimojima M, Takada A, Ebihara H, Neumann G, Fujioka K, Irimura T, Jones S, Feldmann H, Kawaoka Y. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J Virol 2006;80:10109-16. [PMID: 17005688 DOI: 10.1128/JVI.01157-06] [Cited by in Crossref: 182] [Cited by in F6Publishing: 136] [Article Influence: 12.1] [Reference Citation Analysis]
24 Monteiro JT, Lepenies B. Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity. Viruses 2017;9:E59. [PMID: 28327518 DOI: 10.3390/v9030059] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 9.8] [Reference Citation Analysis]
25 Chen L, Zheng S. Understand variability of COVID-19 through population and tissue variations in expression of SARS-CoV-2 host genes. Inform Med Unlocked 2020;21:100443. [PMID: 33072849 DOI: 10.1016/j.imu.2020.100443] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
26 Hoffmann D, Mereiter S, Jin Oh Y, Monteil V, Elder E, Zhu R, Canena D, Hain L, Laurent E, Grünwald-Gruber C, Klausberger M, Jonsson G, Kellner MJ, Novatchkova M, Ticevic M, Chabloz A, Wirnsberger G, Hagelkruys A, Altmann F, Mach L, Stadlmann J, Oostenbrink C, Mirazimi A, Hinterdorfer P, Penninger JM. Identification of lectin receptors for conserved SARS-CoV-2 glycosylation sites. EMBO J 2021;:e108375. [PMID: 34375000 DOI: 10.15252/embj.2021108375] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Li Q, Cheng H, Liu Y, Wang X, He F, Tang L. Activation of mTORC1 by LSECtin in macrophages directs intestinal repair in inflammatory bowel disease. Cell Death Dis 2020;11:918. [PMID: 33106485 DOI: 10.1038/s41419-020-03114-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Shimojima M, Takenouchi A, Shimoda H, Kimura N, Maeda K. Distinct usage of three C-type lectins by Japanese encephalitis virus: DC-SIGN, DC-SIGNR, and LSECtin. Arch Virol 2014;159:2023-31. [PMID: 24623090 DOI: 10.1007/s00705-014-2042-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
29 Bessières M, Plebanek E, Chatterjee P, Shrivastava-Ranjan P, Flint M, Spiropoulou CF, Warszycki D, Bojarski AJ, Roy V, Agrofoglio LA. Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles as inhibitors of ebola virus infection. Eur J Med Chem 2021;214:113211. [PMID: 33548632 DOI: 10.1016/j.ejmech.2021.113211] [Reference Citation Analysis]
30 Lo AW, Tang NL, To KF. How the SARS coronavirus causes disease: host or organism? J Pathol. 2006;208:142-151. [PMID: 16362992 DOI: 10.1002/path.1897] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.3] [Reference Citation Analysis]
31 Marzi A, Akhavan A, Simmons G, Gramberg T, Hofmann H, Bates P, Lingappa VR, Pöhlmann S. The signal peptide of the ebolavirus glycoprotein influences interaction with the cellular lectins DC-SIGN and DC-SIGNR. J Virol 2006;80:6305-17. [PMID: 16775318 DOI: 10.1128/JVI.02545-05] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 2.8] [Reference Citation Analysis]
32 Rogers KJ, Maury W. The role of mononuclear phagocytes in Ebola virus infection. J Leukoc Biol 2018;104:717-27. [PMID: 30095866 DOI: 10.1002/JLB.4RI0518-183R] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
33 Singh M, Bansal V, Feschotte C. A single-cell RNA expression map of human coronavirus entry factors. bioRxiv 2020:2020. [PMID: 32511375 DOI: 10.1101/2020.05.08.084806] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 17.0] [Reference Citation Analysis]
34 Singh H, Koury J, Kaul M. Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses 2021;13:170. [PMID: 33498715 DOI: 10.3390/v13020170] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Brauburger K, Hume AJ, Mühlberger E, Olejnik J. Forty-five years of Marburg virus research. Viruses 2012;4:1878-927. [PMID: 23202446 DOI: 10.3390/v4101878] [Cited by in Crossref: 86] [Cited by in F6Publishing: 72] [Article Influence: 9.6] [Reference Citation Analysis]
36 Pandey E, Nour AS, Harris EN. Prominent Receptors of Liver Sinusoidal Endothelial Cells in Liver Homeostasis and Disease. Front Physiol 2020;11:873. [PMID: 32848838 DOI: 10.3389/fphys.2020.00873] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
37 Loureiro ME, D'Antuono A, López N. Virus⁻Host Interactions Involved in Lassa Virus Entry and Genome Replication. Pathogens 2019;8:E17. [PMID: 30699976 DOI: 10.3390/pathogens8010017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Lavillette D, Barbouche R, Yao Y, Boson B, Cosset FL, Jones IM, Fenouillet E. Significant redox insensitivity of the functions of the SARS-CoV spike glycoprotein: comparison with HIV envelope. J Biol Chem 2006;281:9200-4. [PMID: 16418166 DOI: 10.1074/jbc.M512529200] [Cited by in Crossref: 29] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
39 Cotugno N, Ruggiero A, Bonfante F, Petrara MR, Zicari S, Pascucci GR, Zangari P, De Ioris MA, Santilli V, Manno EC, Amodio D, Bortolami A, Pagliari M, Concato C, Linardos G, Campana A, Donà D, Giaquinto C, Brodin P, Rossi P, De Rossi A, Palma P; CACTUS Study Team. Virological and immunological features of SARS-CoV-2-infected children who develop neutralizing antibodies. Cell Rep 2021;34:108852. [PMID: 33730580 DOI: 10.1016/j.celrep.2021.108852] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
40 Messina F, Giombini E, Agrati C, Vairo F, Ascoli Bartoli T, Al Moghazi S, Piacentini M, Locatelli F, Kobinger G, Maeurer M, Zumla A, Capobianchi MR, Lauria FN, Ippolito G; COVID 19 INMI Network Medicine for IDs Study Group. COVID-19: viral-host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection. J Transl Med 2020;18:233. [PMID: 32522207 DOI: 10.1186/s12967-020-02405-w] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 39.0] [Reference Citation Analysis]
41 Sancho D, Reis e Sousa C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 2012;30:491-529. [PMID: 22224766 DOI: 10.1146/annurev-immunol-031210-101352] [Cited by in Crossref: 318] [Cited by in F6Publishing: 290] [Article Influence: 35.3] [Reference Citation Analysis]
42 Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018;28:443-67. [PMID: 29579213 DOI: 10.1093/glycob/cwy021] [Cited by in Crossref: 109] [Cited by in F6Publishing: 88] [Article Influence: 36.3] [Reference Citation Analysis]
43 Fung TS, Liu DX. Post-translational modifications of coronavirus proteins: roles and function. Future Virol 2018;13:405-30. [PMID: 32201497 DOI: 10.2217/fvl-2018-0008] [Cited by in Crossref: 91] [Cited by in F6Publishing: 77] [Article Influence: 30.3] [Reference Citation Analysis]
44 Bhandari S, Larsen AK, McCourt P, Smedsrød B, Sørensen KK. The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease. Front Physiol 2021;12:757469. [PMID: 34707514 DOI: 10.3389/fphys.2021.757469] [Reference Citation Analysis]
45 Davey RA, Shtanko O, Anantpadma M, Sakurai Y, Chandran K, Maury W. Mechanisms of Filovirus Entry. Curr Top Microbiol Immunol 2017;411:323-52. [PMID: 28601947 DOI: 10.1007/82_2017_14] [Cited by in Crossref: 3] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
46 Matsuno K, Kishida N, Usami K, Igarashi M, Yoshida R, Nakayama E, Shimojima M, Feldmann H, Irimura T, Kawaoka Y, Takada A. Different potential of C-type lectin-mediated entry between Marburg virus strains. J Virol 2010;84:5140-7. [PMID: 20219911 DOI: 10.1128/JVI.02021-09] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
47 Dong G, Wang C, Wu Y, Cong J, Cheng L, Wang M, Zhao P, Tang L, Zhang C, Wu K. Tat peptide-mediated soluble expression of the membrane protein LSECtin-CRD in Escherichia coli. PLoS One 2013;8:e83579. [PMID: 24358298 DOI: 10.1371/journal.pone.0083579] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
48 Hui DS, Chan PK. Severe acute respiratory syndrome and coronavirus. Infect Dis Clin North Am 2010;24:619-38. [PMID: 20674795 DOI: 10.1016/j.idc.2010.04.009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 3.8] [Reference Citation Analysis]
49 Ghareeb DA, Saleh SR, Nofal MS, Kaddah MMY, Hassan SF, Seif IK, El-Zahaby SA, Khedr SM, Kenawy MY, Masoud AA, Soudi SA, Sobhy AA, Sery JG, El-Wahab MGA, Elmoneam AAA, Al-Mahallawi AM, El-Demellawy MA. Potential therapeutic and pharmacological strategies for SARS-CoV2. J Pharm Investig 2021;:1-16. [PMID: 33688448 DOI: 10.1007/s40005-021-00520-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 McLay L, Liang Y, Ly H. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections. J Gen Virol 2014;95:1-15. [PMID: 24068704 DOI: 10.1099/vir.0.057000-0] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 5.9] [Reference Citation Analysis]
51 Martin B, Hoenen T, Canard B, Decroly E. Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antiviral Res 2016;135:1-14. [PMID: 27640102 DOI: 10.1016/j.antiviral.2016.09.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
52 Zhou N, Pan T, Zhang J, Li Q, Zhang X, Bai C, Huang F, Peng T, Zhang J, Liu C, Tao L, Zhang H. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). J Biol Chem 2016;291:9218-32. [PMID: 26953343 DOI: 10.1074/jbc.M116.716100] [Cited by in Crossref: 146] [Cited by in F6Publishing: 117] [Article Influence: 29.2] [Reference Citation Analysis]
53 Olejnik J, Ryabchikova E, Corley RB, Mühlberger E. Intracellular events and cell fate in filovirus infection. Viruses 2011;3:1501-31. [PMID: 21927676 DOI: 10.3390/v3081501] [Cited by in Crossref: 54] [Cited by in F6Publishing: 43] [Article Influence: 6.0] [Reference Citation Analysis]
54 Vigerust DJ. Protein glycosylation in infectious disease pathobiology and treatment. Cent Eur J Biol 2011;6:802. [PMID: 32215117 DOI: 10.2478/s11535-011-0050-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
55 Li Y, Hao B, Kuai X, Xing G, Yang J, Chen J, Tang L, Zhang L, He F. C-type lectin LSECtin interacts with DC-SIGNR and is involved in hepatitis C virus binding. Mol Cell Biochem 2009;327:183-90. [PMID: 19234677 DOI: 10.1007/s11010-009-0056-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
56 Lennemann NJ, Rhein BA, Ndungo E, Chandran K, Qiu X, Maury W. Comprehensive functional analysis of N-linked glycans on Ebola virus GP1. mBio 2014;5:e00862-13. [PMID: 24473128 DOI: 10.1128/mBio.00862-13] [Cited by in Crossref: 69] [Cited by in F6Publishing: 46] [Article Influence: 9.9] [Reference Citation Analysis]
57 Li W, Choe H, Farzan M. Insights from the association of SARS-CoV S-protein with its receptor, ACE2. Adv Exp Med Biol 2006;581:209-18. [PMID: 17037532 DOI: 10.1007/978-0-387-33012-9_36] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
58 Solomon Tsegaye T, Gnirß K, Rahe-Meyer N, Kiene M, Krämer-Kühl A, Behrens G, Münch J, Pöhlmann S. Platelet activation suppresses HIV-1 infection of T cells. Retrovirology 2013;10:48. [PMID: 23634812 DOI: 10.1186/1742-4690-10-48] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
59 Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol. 2018;15:555-567. [PMID: 29844586 DOI: 10.1038/s41575-018-0020-y] [Cited by in Crossref: 91] [Cited by in F6Publishing: 88] [Article Influence: 45.5] [Reference Citation Analysis]
60 Gehring G, Rohrmann K, Atenchong N, Mittler E, Becker S, Dahlmann F, Pöhlmann S, Vondran FW, David S, Manns MP, Ciesek S, von Hahn T. The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. J Antimicrob Chemother 2014;69:2123-31. [PMID: 24710028 DOI: 10.1093/jac/dku091] [Cited by in Crossref: 126] [Cited by in F6Publishing: 114] [Article Influence: 18.0] [Reference Citation Analysis]
61 Singh M, Bansal V, Feschotte C. A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. SSRN 2020;:3611279. [PMID: 32714119 DOI: 10.2139/ssrn.3611279] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Hacker K, White L, de Silva AM. N-linked glycans on dengue viruses grown in mammalian and insect cells. J Gen Virol 2009;90:2097-106. [PMID: 19494052 DOI: 10.1099/vir.0.012120-0] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 4.7] [Reference Citation Analysis]
63 Martinez O, Ndungo E, Tantral L, Miller EH, Leung LW, Chandran K, Basler CF. A mutation in the Ebola virus envelope glycoprotein restricts viral entry in a host species- and cell-type-specific manner. J Virol 2013;87:3324-34. [PMID: 23302883 DOI: 10.1128/JVI.01598-12] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 3.9] [Reference Citation Analysis]
64 Zhao D, Han X, Zheng X, Wang H, Yang Z, Liu D, Han K, Liu J, Wang X, Yang W, Dong Q, Yang S, Xia X, Tang L, He F. The Myeloid LSECtin Is a DAP12-Coupled Receptor That Is Crucial for Inflammatory Response Induced by Ebola Virus Glycoprotein. PLoS Pathog 2016;12:e1005487. [PMID: 26943817 DOI: 10.1371/journal.ppat.1005487] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
65 Gold AS, Feitosa-Suntheimer F, Asad S, Adeoye B, Connor JH, Colpitts TM. Examining the Role of Niemann-Pick C1 Protein in the Permissiveness of Aedes Mosquitoes to Filoviruses. ACS Infect Dis 2020;6:2023-8. [PMID: 32609483 DOI: 10.1021/acsinfecdis.0c00018] [Reference Citation Analysis]
66 Boson B, Legros V, Zhou B, Siret E, Mathieu C, Cosset FL, Lavillette D, Denolly S. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J Biol Chem 2021;296:100111. [PMID: 33229438 DOI: 10.1074/jbc.RA120.016175] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 28.0] [Reference Citation Analysis]
67 Wong SS, Yuen KY. The severe acute respiratory syndrome (SARS). J Neurovirol 2005;11:455-68. [PMID: 16287687 DOI: 10.1080/13550280500187724] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
68 Singh M, Bansal V, Feschotte C. A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. Cell Rep 2020;32:108175. [PMID: 32946807 DOI: 10.1016/j.celrep.2020.108175] [Cited by in Crossref: 73] [Cited by in F6Publishing: 79] [Article Influence: 73.0] [Reference Citation Analysis]
69 Usami K, Matsuno K, Igarashi M, Denda-Nagai K, Takada A, Irimura T. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin. Biochem Biophys Res Commun 2011;407:74-8. [PMID: 21362405 DOI: 10.1016/j.bbrc.2011.02.110] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
70 Tang L, Yang J, Tang X, Ying W, Qian X, He F. The DC-SIGN family member LSECtin is a novel ligand of CD44 on activated T cells. Eur J Immunol 2010;40:1185-91. [PMID: 20127679 DOI: 10.1002/eji.200939936] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
71 Anaeigoudari A, Mollaei HR, Arababadi MK, Nosratabadi R. Severe Acute Respiratory Syndrome Coronavirus 2: The Role of the Main Components of the Innate Immune System. Inflammation 2021. [PMID: 34524614 DOI: 10.1007/s10753-021-01519-7] [Reference Citation Analysis]
72 [DOI: 10.1101/2020.02.16.951913] [Cited by in Crossref: 20] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
73 Hofmann H, Simmons G, Rennekamp AJ, Chaipan C, Gramberg T, Heck E, Geier M, Wegele A, Marzi A, Bates P, Pöhlmann S. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J Virol 2006;80:8639-52. [PMID: 16912312 DOI: 10.1128/JVI.00560-06] [Cited by in Crossref: 82] [Cited by in F6Publishing: 65] [Article Influence: 5.5] [Reference Citation Analysis]
74 Trbojević-Akmačić I, Petrović T, Lauc G. SARS-CoV-2 S glycoprotein binding to multiple host receptors enables cell entry and infection. Glycoconj J 2021;38:611-23. [PMID: 34542788 DOI: 10.1007/s10719-021-10021-z] [Reference Citation Analysis]
75 Cheng YR, Li X, Zhao X, Lin H. Cell Entry of Animal Coronaviruses. Viruses 2021;13:1977. [PMID: 34696406 DOI: 10.3390/v13101977] [Reference Citation Analysis]
76 Dahlmann F, Biedenkopf N, Babler A, Jahnen-Dechent W, Karsten CB, Gnirß K, Schneider H, Wrensch F, O'Callaghan CA, Bertram S, Herrler G, Becker S, Pöhlmann S, Hofmann-Winkler H. Analysis of Ebola Virus Entry Into Macrophages. J Infect Dis 2015;212 Suppl 2:S247-57. [PMID: 25877552 DOI: 10.1093/infdis/jiv140] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 5.2] [Reference Citation Analysis]
77 Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021;136:111193. [PMID: 33461019 DOI: 10.1016/j.biopha.2020.111193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
78 Aspinall AI, Curbishley SM, Lalor PF, Weston CJ, Blahova M, Liaskou E, Adams RM, Holt AP, Adams DH. CX(3)CR1 and vascular adhesion protein-1-dependent recruitment of CD16(+) monocytes across human liver sinusoidal endothelium. Hepatology. 2010;51:2030-2039. [PMID: 20512991 DOI: 10.1002/hep.23591] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 6.1] [Reference Citation Analysis]
79 Marzi A, Möller P, Hanna SL, Harrer T, Eisemann J, Steinkasserer A, Becker S, Baribaud F, Pöhlmann S. Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR. J Infect Dis 2007;196 Suppl 2:S237-46. [PMID: 17940955 DOI: 10.1086/520607] [Cited by in Crossref: 58] [Cited by in F6Publishing: 57] [Article Influence: 4.5] [Reference Citation Analysis]
80 de Haan CA, Rottier PJ. Hosting the severe acute respiratory syndrome coronavirus: specific cell factors required for infection. Cell Microbiol 2006;8:1211-8. [PMID: 16803585 DOI: 10.1111/j.1462-5822.2006.00744.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
81 Apostolopoulos V, Thalhammer T, Tzakos AG, Stojanovska L. Targeting antigens to dendritic cell receptors for vaccine development. J Drug Deliv. 2013;2013:869718. [PMID: 24228179 DOI: 10.1155/2013/869718] [Cited by in Crossref: 79] [Cited by in F6Publishing: 78] [Article Influence: 9.9] [Reference Citation Analysis]
82 Schafer A, Cheng H, Xiong R, Soloveva V, Retterer C, Mo F, Bavari S, Thatcher G, Rong L. Repurposing potential of 1st generation H1-specific antihistamines as anti-filovirus therapeutics. Antiviral Res 2018;157:47-56. [PMID: 29981374 DOI: 10.1016/j.antiviral.2018.07.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
83 Lennemann NJ, Dillard J, Ruggio N, Cooney AL, Schaack GA, Davey RA, Maury W. A Naturally Occurring Polymorphism in the Base of Sudan Virus Glycoprotein Decreases Glycoprotein Stability in a Species-Dependent Manner. J Virol 2021;95:e0107321. [PMID: 34232742 DOI: 10.1128/JVI.01073-21] [Reference Citation Analysis]
84 Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol. 2007;15:211-218. [PMID: 17398101 DOI: 10.1016/j.tim.2007.03.003] [Cited by in Crossref: 351] [Cited by in F6Publishing: 331] [Article Influence: 25.1] [Reference Citation Analysis]
85 Pipirou Z, Powlesland AS, Steffen I, Pöhlmann S, Taylor ME, Drickamer K. Mouse LSECtin as a model for a human Ebola virus receptor. Glycobiology 2011;21:806-12. [PMID: 21257728 DOI: 10.1093/glycob/cwr008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.9] [Reference Citation Analysis]
86 Huang YW, Meng XJ. Identification of a porcine DC-SIGN-related C-type lectin, porcine CLEC4G (LSECtin), and its order of intron removal during splicing: comparative genomic analyses of the cluster of genes CD23/CLEC4G/DC-SIGN among mammalian species. Dev Comp Immunol 2009;33:747-60. [PMID: 19166875 DOI: 10.1016/j.dci.2008.12.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
87 Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526:135-140. [PMID: 32199615 DOI: 10.1016/j.bbrc.2020.03.044] [Cited by in Crossref: 358] [Cited by in F6Publishing: 351] [Article Influence: 358.0] [Reference Citation Analysis]
88 Hofmann-Winkler H, Gnirß K, Wrensch F, Pöhlmann S. Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976. J Infect Dis 2015;212 Suppl 2:S172-80. [PMID: 25840443 DOI: 10.1093/infdis/jiv101] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
89 Jemielity S, Wang JJ, Chan YK, Ahmed AA, Li W, Monahan S, Bu X, Farzan M, Freeman GJ, Umetsu DT, Dekruyff RH, Choe H. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog 2013;9:e1003232. [PMID: 23555248 DOI: 10.1371/journal.ppat.1003232] [Cited by in Crossref: 206] [Cited by in F6Publishing: 186] [Article Influence: 25.8] [Reference Citation Analysis]
90 Abdullah SF, Sharquie IK. SARS-CoV-2: A Piece of Bad News. Medeni Med J 2020;35:151-60. [PMID: 32733765 DOI: 10.5222/MMJ.2020.82584] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
91 Matsuno K, Nakayama E, Noyori O, Marzi A, Ebihara H, Irimura T, Feldmann H, Takada A. C-type lectins do not act as functional receptors for filovirus entry into cells. Biochem Biophys Res Commun 2010;403:144-8. [PMID: 21056544 DOI: 10.1016/j.bbrc.2010.10.136] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
92 Enkirch T, von Messling V. Ferret models of viral pathogenesis. Virology 2015;479-480:259-70. [PMID: 25816764 DOI: 10.1016/j.virol.2015.03.017] [Cited by in Crossref: 84] [Cited by in F6Publishing: 85] [Article Influence: 14.0] [Reference Citation Analysis]
93 Hunt CL, Lennemann NJ, Maury W. Filovirus entry: a novelty in the viral fusion world. Viruses 2012;4:258-75. [PMID: 22470835 DOI: 10.3390/v4020258] [Cited by in Crossref: 68] [Cited by in F6Publishing: 59] [Article Influence: 7.6] [Reference Citation Analysis]
94 Liu R, Zhao L, Cheng X, Han H, Li C, Li D, Liu A, Gao G, Zhou F, Liu F, Jiang Y, Zhu C, Xia Y. Clinical characteristics of COVID-19 patients with hepatitis B virus infection - a retrospective study. Liver Int. 2021;41:720-730. [PMID: 33351265 DOI: 10.1111/liv.14774] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
95 Li D, Chen T, Hu Y, Zhou Y, Liu Q, Zhou D, Jin X, Huang Z. An Ebola Virus-Like Particle-Based Reporter System Enables Evaluation of Antiviral Drugs In Vivo under Non-Biosafety Level 4 Conditions. J Virol 2016;90:8720-8. [PMID: 27440895 DOI: 10.1128/JVI.01239-16] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
96 Kuhn JH, Radoshitzky SR, Guth AC, Warfield KL, Li W, Vincent MJ, Towner JS, Nichol ST, Bavari S, Choe H, Aman MJ, Farzan M. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem 2006;281:15951-8. [PMID: 16595665 DOI: 10.1074/jbc.M601796200] [Cited by in Crossref: 97] [Cited by in F6Publishing: 78] [Article Influence: 6.5] [Reference Citation Analysis]
97 Lalor P, Lai W, Curbishley S, Shetty S, Adams D. Human hepatic sinusoidal endothelial cells can be distinguished by expression of phenotypic markers related to their specialised functions in vivoWorld J Gastroenterol 2006; 12(34): 5429-5439 [PMID: 17006978 DOI: 10.3748/wjg.v12.i34.5429] [Cited by in CrossRef: 112] [Cited by in F6Publishing: 109] [Article Influence: 7.5] [Reference Citation Analysis]
98 Bowden TA, Crispin M, Harvey DJ, Aricescu AR, Grimes JM, Jones EY, Stuart DI. Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design. J Virol 2008;82:11628-36. [PMID: 18815311 DOI: 10.1128/JVI.01344-08] [Cited by in Crossref: 82] [Cited by in F6Publishing: 59] [Article Influence: 6.3] [Reference Citation Analysis]
99 Spiegel M, Plegge T, Pöhlmann S. The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release. Viruses 2016;8:E202. [PMID: 27455305 DOI: 10.3390/v8070202] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
100 Misasi J, Sullivan NJ. Immunotherapeutic strategies to target vulnerabilities in the Ebolavirus glycoprotein. Immunity 2021;54:412-36. [PMID: 33691133 DOI: 10.1016/j.immuni.2021.01.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
101 Fujihira H, Usami K, Matsuno K, Takeuchi H, Denda-Nagai K, Furukawa JI, Shinohara Y, Takada A, Kawaoka Y, Irimura T. A Critical Domain of Ebolavirus Envelope Glycoprotein Determines Glycoform and Infectivity. Sci Rep 2018;8:5495. [PMID: 29615747 DOI: 10.1038/s41598-018-23357-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
102 Nehls J, Businger R, Hoffmann M, Brinkmann C, Fehrenbacher B, Schaller M, Maurer B, Schönfeld C, Kramer D, Hailfinger S, Pöhlmann S, Schindler M. Release of Immunomodulatory Ebola Virus Glycoprotein-Containing Microvesicles Is Suppressed by Tetherin in a Species-Specific Manner. Cell Rep 2019;26:1841-1853.e6. [PMID: 30759394 DOI: 10.1016/j.celrep.2019.01.065] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
103 Ortega V, Stone JA, Contreras EM, Iorio RM, Aguilar HC. Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology 2019;29:2-21. [PMID: 29878112 DOI: 10.1093/glycob/cwy053] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
104 Tang L, Yang J, Liu W, Tang X, Chen J, Zhao D, Wang M, Xu F, Lu Y, Liu B. Liver sinusoidal endothelial cell lectin, LSECtin, negatively regulates hepatic T-cell immune response. Gastroenterology. 2009;137:1498-1508.e1-5. [PMID: 19632227 DOI: 10.1053/j.gastro.2009.07.051] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 5.1] [Reference Citation Analysis]
105 Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells? Int J Mol Sci 2021;22:992. [PMID: 33498183 DOI: 10.3390/ijms22030992] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 16.0] [Reference Citation Analysis]
106 Zhu S, Liu Y, Zhou Z, Zhang Z, Xiao X, Liu Z, Chen A, Dong X, Tian F, Chen S, Xu Y, Wang C, Li Q, Niu X, Pan Q, Du S, Xiao J, Wang J, Wei W. Genome-wide CRISPR activation screen identifies candidate receptors for SARS-CoV-2 entry. Sci China Life Sci 2021. [PMID: 34431042 DOI: 10.1007/s11427-021-1990-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
107 Dominguez-soto A, Aragoneses-fenoll L, Martin-gayo E, Martinez-prats L, Colmenares M, Naranjo-gomez M, Borras FE, Munoz P, Zubiaur M, Toribio ML, Delgado R, Corbi AL. The DC-SIGN–related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells. Blood 2007;109:5337-45. [DOI: 10.1182/blood-2006-09-048058] [Cited by in Crossref: 66] [Cited by in F6Publishing: 62] [Article Influence: 4.7] [Reference Citation Analysis]
108 Yang J, Wang H, Wang M, Liu B, Xu H, Xu F, Zhao D, Hu B, Zhao N, Wang J, Liu D, Tang L, He F. Involvement of LSECtin in the hepatic natural killer cell response. Biochem Biophys Res Commun 2016;476:49-55. [PMID: 27184407 DOI: 10.1016/j.bbrc.2016.05.072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
109 Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20:660-694. [PMID: 17934078 DOI: 10.1128/cmr.00023-07] [Cited by in Crossref: 543] [Cited by in F6Publishing: 342] [Article Influence: 38.8] [Reference Citation Analysis]
110 Zapatero-Belinchón FJ, Dietzel E, Dolnik O, Döhner K, Costa R, Hertel B, Veselkova B, Kirui J, Klintworth A, Manns MP, Pöhlmann S, Pietschmann T, Krey T, Ciesek S, Gerold G, Sodeik B, Becker S, von Hahn T. Characterization of the Filovirus-Resistant Cell Line SH-SY5Y Reveals Redundant Role of Cell Surface Entry Factors. Viruses 2019;11:E275. [PMID: 30893855 DOI: 10.3390/v11030275] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
111 Tripathi SC, Deshmukh V, Creighton CJ, Patil A. Renal Carcinoma Is Associated With Increased Risk of Coronavirus Infections. Front Mol Biosci 2020;7:579422. [PMID: 33330620 DOI: 10.3389/fmolb.2020.579422] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
112 Gultom M, Licheri M, Laloli L, Wider M, Strässle M, V'kovski P, Steiner S, Kratzel A, Thao TTN, Probst L, Stalder H, Portmann J, Holwerda M, Ebert N, Stokar-Regenscheit N, Gurtner C, Zanolari P, Posthaus H, Schuller S, Vicente-Santos A, Moreira-Soto A, Corrales-Aguilar E, Ruggli N, Tekes G, von Messling V, Sawatsky B, Thiel V, Dijkman R. Susceptibility of Well-Differentiated Airway Epithelial Cell Cultures from Domestic and Wild Animals to Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis 2021;27:1811-20. [PMID: 34152956 DOI: 10.3201/eid2707.204660] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
113 Simmons G, Bertram S, Glowacka I, Steffen I, Chaipan C, Agudelo J, Lu K, Rennekamp AJ, Hofmann H, Bates P, Pöhlmann S. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion. Virology 2011;413:265-74. [PMID: 21435673 DOI: 10.1016/j.virol.2011.02.020] [Cited by in Crossref: 85] [Cited by in F6Publishing: 83] [Article Influence: 8.5] [Reference Citation Analysis]
114 Marzi A, Wegele A, Pöhlmann S. Modulation of virion incorporation of Ebolavirus glycoprotein: effects on attachment, cellular entry and neutralization. Virology 2006;352:345-56. [PMID: 16777170 DOI: 10.1016/j.virol.2006.04.038] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.2] [Reference Citation Analysis]
115 Takada A. Filovirus tropism: cellular molecules for viral entry. Front Microbiol 2012;3:34. [PMID: 22363323 DOI: 10.3389/fmicb.2012.00034] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 5.7] [Reference Citation Analysis]
116 Hofmann H, Li X, Zhang X, Liu W, Kühl A, Kaup F, Soldan SS, González-Scarano F, Weber F, He Y, Pöhlmann S. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol 2013;87:4384-94. [PMID: 23388721 DOI: 10.1128/JVI.02628-12] [Cited by in Crossref: 79] [Cited by in F6Publishing: 48] [Article Influence: 9.9] [Reference Citation Analysis]
117 Gramberg T, Soilleux E, Fisch T, Lalor PF, Hofmann H, Wheeldon S, Cotterill A, Wegele A, Winkler T, Adams DH, Pöhlmann S. Interactions of LSECtin and DC-SIGN/DC-SIGNR with viral ligands: Differential pH dependence, internalization and virion binding. Virology 2008;373:189-201. [PMID: 18083206 DOI: 10.1016/j.virol.2007.11.001] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 3.9] [Reference Citation Analysis]
118 Meng X, Lou QY, Yang WY, Chen R, Xu WH, Yang Y, Zhang L, Xu T, Xiang HF. Gordian Knot: Gastrointestinal lesions caused by three highly pathogenic coronaviruses from SARS-CoV and MERS-CoV to SARS-CoV-2. Eur J Pharmacol 2021;890:173659. [PMID: 33131637 DOI: 10.1016/j.ejphar.2020.173659] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
119 Zhang F, Ren S, Zuo Y. DC-SIGN, DC-SIGNR and LSECtin: C-type lectins for infection. Int Rev Immunol 2014;33:54-66. [PMID: 24156700 DOI: 10.3109/08830185.2013.834897] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 4.4] [Reference Citation Analysis]
120 Cheng H, Schafer A, Soloveva V, Gharaibeh D, Kenny T, Retterer C, Zamani R, Bavari S, Peet NP, Rong L. Identification of a coumarin-based antihistamine-like small molecule as an anti-filoviral entry inhibitor. Antiviral Res 2017;145:24-32. [PMID: 28645623 DOI: 10.1016/j.antiviral.2017.06.015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
121 Hofmann-Winkler H, Kaup F, Pöhlmann S. Host cell factors in filovirus entry: novel players, new insights. Viruses 2012;4:3336-62. [PMID: 23342362 DOI: 10.3390/v4123336] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
122 Prenzler S, Rudrawar S, Waespy M, Kelm S, Anoopkumar-Dukie S, Haselhorst T. The role of sialic acid-binding immunoglobulin-like-lectin-1 (siglec-1) in immunology and infectious disease. Int Rev Immunol 2021;:1-26. [PMID: 34494938 DOI: 10.1080/08830185.2021.1931171] [Reference Citation Analysis]
123 Wang C, Yang J, Zhou Y, Cong J, Dong G, Hu X, Tang L, Wu K. Mobility study of individual residue sites in the carbohydrate recognition domain of LSECtin using SDSL-EPR technique. Appl Biochem Biotechnol 2012;167:2295-304. [PMID: 22711492 DOI: 10.1007/s12010-012-9766-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
124 Gerlier D. Emerging zoonotic viruses: new lessons on receptor and entry mechanisms. Curr Opin Virol 2011;1:27-34. [PMID: 22440564 DOI: 10.1016/j.coviro.2011.05.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
125 Shetty S, Weston CJ, Oo YH, Westerlund N, Stamataki Z, Youster J, Hubscher SG, Salmi M, Jalkanen S, Lalor PF, Adams DH. Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. J Immunol 2011;186:4147-55. [PMID: 21368224 DOI: 10.4049/jimmunol.1002961] [Cited by in Crossref: 95] [Cited by in F6Publishing: 83] [Article Influence: 9.5] [Reference Citation Analysis]
126 Zhang Y, Lai H, Chen P, Li D, Khan I, Hsiao WLW, Fan X, Yao X, Wu Q, Wang M, Leung EL. Clinical significance of LSECtin and its association with PVR in non-small-cell lung cancer patients. Ann Transl Med 2020;8:1393. [PMID: 33313138 DOI: 10.21037/atm-20-3665] [Reference Citation Analysis]
127 Baker D, Amor S, Kang AS, Schmierer K, Giovannoni G. The underpinning biology relating to multiple sclerosis disease modifying treatments during the COVID-19 pandemic. Mult Scler Relat Disord 2020;43:102174. [PMID: 32464584 DOI: 10.1016/j.msard.2020.102174] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 36.0] [Reference Citation Analysis]
128 Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020;21:2999-3025. [PMID: 32426893 DOI: 10.1002/cbic.202000238] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
129 Jae LT, Brummelkamp TR. Emerging intracellular receptors for hemorrhagic fever viruses. Trends Microbiol 2015;23:392-400. [PMID: 26004032 DOI: 10.1016/j.tim.2015.04.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
130 Shimojima M, Ströher U, Ebihara H, Feldmann H, Kawaoka Y. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J Virol 2012;86:2067-78. [PMID: 22156524 DOI: 10.1128/JVI.06451-11] [Cited by in Crossref: 101] [Cited by in F6Publishing: 77] [Article Influence: 10.1] [Reference Citation Analysis]
131 Simmons G. Filovirus entry. Adv Exp Med Biol 2013;790:83-94. [PMID: 23884587 DOI: 10.1007/978-1-4614-7651-1_5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
132 Yabe R, Tateno H, Hirabayashi J. Frontal affinity chromatography analysis of constructs of DC-SIGN, DC-SIGNR and LSECtin extend evidence for affinity to agalactosylated N-glycans. FEBS J 2010;277:4010-26. [PMID: 20840590 DOI: 10.1111/j.1742-4658.2010.07792.x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 2.5] [Reference Citation Analysis]
133 van den Brand JM, Haagmans BL, Leijten L, van Riel D, Martina BE, Osterhaus AD, Kuiken T. Pathology of experimental SARS coronavirus infection in cats and ferrets. Vet Pathol. 2008;45:551-562. [PMID: 18587105 DOI: 10.1354/vp.45-4-551] [Cited by in Crossref: 73] [Cited by in F6Publishing: 65] [Article Influence: 5.6] [Reference Citation Analysis]
134 van den Brand JM, Haagmans BL, van Riel D, Osterhaus AD, Kuiken T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol. 2014;151:83-112. [PMID: 24581932 DOI: 10.1016/j.jcpa.2014.01.004] [Cited by in Crossref: 87] [Cited by in F6Publishing: 82] [Article Influence: 12.4] [Reference Citation Analysis]
135 Youn YJ, Lee YB, Kim SH, Jin HK, Bae JS, Hong CW. Nucleocapsid and Spike Proteins of SARS-CoV-2 Drive Neutrophil Extracellular Trap Formation. Immune Netw 2021;21:e16. [PMID: 33996172 DOI: 10.4110/in.2021.21.e16] [Reference Citation Analysis]
136 Martinez O, Johnson JC, Honko A, Yen B, Shabman RS, Hensley LE, Olinger GG, Basler CF. Ebola virus exploits a monocyte differentiation program to promote its entry. J Virol 2013;87:3801-14. [PMID: 23345511 DOI: 10.1128/JVI.02695-12] [Cited by in Crossref: 47] [Cited by in F6Publishing: 32] [Article Influence: 5.9] [Reference Citation Analysis]
137 Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli KP, Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia MT, Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci U S A 2020;117:22311-22. [PMID: 32826334 DOI: 10.1073/pnas.2010146117] [Cited by in Crossref: 136] [Cited by in F6Publishing: 156] [Article Influence: 136.0] [Reference Citation Analysis]
138 Hui DS, Chan PK. Clinical features, pathogenesis and immunobiology of severe acute respiratory syndrome. Curr Opin Pulm Med 2008;14:241-7. [PMID: 18427248 DOI: 10.1097/MCP.0b013e3282fb81b2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
139 Li W, Wong SK, Li F, Kuhn JH, Huang IC, Choe H, Farzan M. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J Virol 2006;80:4211-9. [PMID: 16611880 DOI: 10.1128/JVI.80.9.4211-4219.2006] [Cited by in Crossref: 171] [Cited by in F6Publishing: 130] [Article Influence: 11.4] [Reference Citation Analysis]
140 Wang W, Han GZ. Pervasive positive selection on virus receptors driven by host-virus conflicts in mammals. J Virol 2021;:JVI0102921. [PMID: 34319153 DOI: 10.1128/JVI.01029-21] [Reference Citation Analysis]
141 Tong TR. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). Perspect Med Virol 2006;16:43-95. [PMID: 32287586 DOI: 10.1016/S0168-7069(06)16004-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]