BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Noronha LE, Harman RM, Wagner B, Antczak DF. Generation and characterization of monoclonal antibodies to equine CD16. Vet Immunol Immunopathol 2012;146:135-42. [PMID: 22424928 DOI: 10.1016/j.vetimm.2012.02.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
Number Citing Articles
1 Larson EM, Babasyan S, Wagner B. Phenotype and function of IgE-binding monocytes in equine Culicoides hypersensitivity. PLoS One 2020;15:e0233537. [PMID: 32442209 DOI: 10.1371/journal.pone.0233537] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
2 Schnabel CL, Babasyan S, Freer H, Wagner B. CXCL10 production in equine monocytes is stimulated by interferon-gamma. Veterinary Immunology and Immunopathology 2019;207:25-30. [DOI: 10.1016/j.vetimm.2018.11.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
3 Karagianni AE, Lisowski ZM, Hume DA, Scott Pirie R. The equine mononuclear phagocyte system: The relevance of the horse as a model for understanding human innate immunity. Equine Vet J 2021;53:231-49. [PMID: 32881079 DOI: 10.1111/evj.13341] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
4 Ziegler-Heitbrock L. Reprint of: Monocyte subsets in man and other species. Cell Immunol 2014;291:11-5. [PMID: 25015741 DOI: 10.1016/j.cellimm.2014.06.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
5 Larson EM, Babasyan S, Wagner B. IgE-Binding Monocytes Have an Enhanced Ability to Produce IL-8 (CXCL8) in Animals with Naturally Occurring Allergy. J Immunol 2021;206:2312-21. [PMID: 33952617 DOI: 10.4049/jimmunol.2001354] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Bullone M, Lavoie J. Recurrent Airway Obstruction and Summer Pasture-Associated Obstructive Pulmonary Disease. In: Felippe MJB, editor. Equine Clinical Immunology. Chichester: John Wiley & Sons, Inc.; 2016. pp. 127-44. [DOI: 10.1002/9781119086512.ch16] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
7 Horohov DW. The equine immune responses to infectious and allergic disease: a model for humans? Mol Immunol 2015;66:89-96. [PMID: 25457878 DOI: 10.1016/j.molimm.2014.09.020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
8 Tomlinson JE, Wagner B, Felippe MJB, Van de Walle GR. Multispectral fluorescence-activated cell sorting of B and T cell subpopulations from equine peripheral blood. Veterinary Immunology and Immunopathology 2018;199:22-31. [DOI: 10.1016/j.vetimm.2018.03.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
9 Ziegler-Heitbrock L. Monocyte subsets in man and other species. Cell Immunol. 2014;289:135-139. [PMID: 24791698 DOI: 10.1016/j.cellimm.2014.03.019] [Cited by in Crossref: 115] [Cited by in F6Publishing: 107] [Article Influence: 14.4] [Reference Citation Analysis]
10 Tahir S, Steffens S. Nonclassical monocytes in cardiovascular physiology and disease. Am J Physiol Cell Physiol 2021;320:C761-70. [PMID: 33596150 DOI: 10.1152/ajpcell.00326.2020] [Reference Citation Analysis]
11 Corripio-Miyar Y, Hope J, McInnes CJ, Wattegedera SR, Jensen K, Pang Y, Entrican G, Glass EJ. Phenotypic and functional analysis of monocyte populations in cattle peripheral blood identifies a subset with high endocytic and allogeneic T-cell stimulatory capacity. Vet Res 2015;46:112. [PMID: 26407849 DOI: 10.1186/s13567-015-0246-4] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
12 Rzepecka A, Żmigrodzka M, Witkowska-Piłaszewicz O, Cywińska A, Winnicka A. CD4 and MHCII phenotypic variability of peripheral blood monocytes in dogs. PLoS One 2019;14:e0219214. [PMID: 31269060 DOI: 10.1371/journal.pone.0219214] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
13 Patel RS, Tomlinson JE, Divers TJ, Van de Walle GR, Rosenberg BR. Single-cell resolution landscape of equine peripheral blood mononuclear cells reveals diverse cell types including T-bet+ B cells. BMC Biol 2021;19:13. [PMID: 33482825 DOI: 10.1186/s12915-020-00947-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Antczak D. T-cell Tolerance to the Developing Equine Conceptus: T-cell Tolerance to the Equine Conceptus. Reproduction in Domestic Animals 2012;47:376-83. [DOI: 10.1111/j.1439-0531.2012.02101.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
15 Perkins GA, Goodman LB, Wimer C, Freer H, Babasyan S, Wagner B. Maternal T-lymphocytes in equine colostrum express a primarily inflammatory phenotype. Vet Immunol Immunopathol 2014;161:141-50. [PMID: 25174977 DOI: 10.1016/j.vetimm.2014.07.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
16 Noronha LE, Harman RM, Wagner B, Antczak DF. Generation and characterization of monoclonal antibodies to equine NKp46. Vet Immunol Immunopathol 2012;147:60-8. [PMID: 22551980 DOI: 10.1016/j.vetimm.2012.04.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
17 Karagianni AE, Kapetanovic R, McGorum BC, Hume DA, Pirie SR. The equine alveolar macrophage: functional and phenotypic comparisons with peritoneal macrophages. Vet Immunol Immunopathol 2013;155:219-28. [PMID: 23978307 DOI: 10.1016/j.vetimm.2013.07.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]